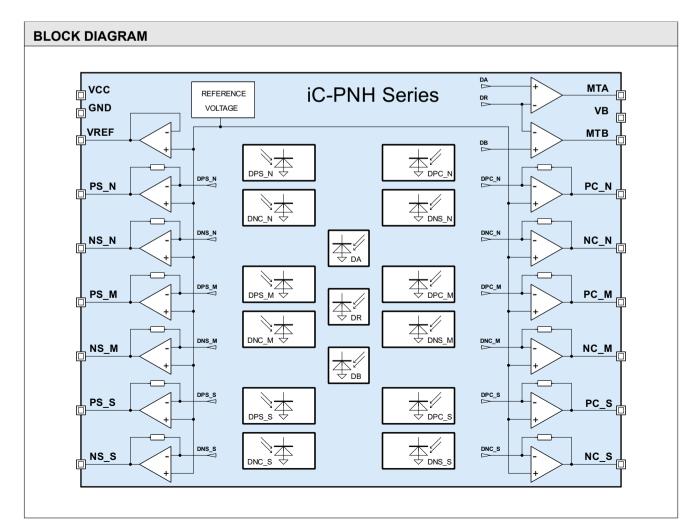
#### PHASED ARRAY NONIUS ENCODERS



Rev F3, Page 1/15


#### **FEATURES**

- ♦ Compact, high resolution absolute encoder ICs for up to 24 bit singleturn resolution (with nonius interpolation)
- ♦ For code discs of Ø 26 mm, Ø 33 mm, Ø 39 mm
- Monolithic 3-channel HD Phased Array with excellent signal matching
- ♦ Moderate track pitch for reduced cross talk
- ♦ Ultra low dark currents for operation up to high temperature
- ♦ Low noise amplifiers with high transimpedance gain
- ♦ Enhanced EMI tolerance by low impedance differential, short-circuit-proof, analog sine/cosine outputs
- ♦ Embedded sector detection by 2 digital tracks (2-bit Gray code)
- ♦ Low power consumption from single 4.1 to 5.5 V supply
- ♦ Operational temperature range of -40 °C to +125 °C
- ♦ Space saving optoQFN package (RoHS compliant)
- ♦ Evaluation kits with LED and code disc available for sampling

#### **APPLICATIONS**

- ♦ Absolute position encoders
- ♦ AC servo feedback

# 32-pin optoQFN 5 mm x 5 mm x 0.9 mm RoHS compliant



#### PHASED ARRAY NONIUS ENCODERS



Rev F3, Page 2/15

#### **DESCRIPTION**

The iC-PNH device series represents advanced optical encoder ICs featuring monolithically integrated photosensors arranged as an *HD Phased Array*, providing excellent signal fidelity at relaxed alignment tolerances.

Its precision sine/cosine output signals allow for a high-resolution interpolation by subsequent devices: depending on the iC-PNH version, a singleturn position can be resolved with up to 24 bit utilizing the 3-channel nonius interpolation of iC-MN.

The typical application of iC-PNH devices are absolute position encoders for motion control and drive applications.

iC-PNH scans 5 tracks in total, whereof 3 analog tracks feature phased-arrays of multiple photosensors each per track, generating positive and negative going sine signals, as well as positive and negative going cosine signals. An excellent matching and common mode behavior of the differential signal paths is obtained by a paired amplifier design. Due to a typical transimpedance gain of 1  $M\Omega$ , the output signal level reaches a few hundred millivolts already at low light conditions.

Additional 2 digital tracks are implemented for sector detection, to separate a repeated nonius scale. For

instance, the standard code discs made for iC-PNH feature two nonius scales per turn and provide a 2-bit Gray code to distinguish this.

Sector detection can be used already at low supply voltages from 1.8 V up; the power consumption is low unless other sections are biased. Full operation requires a single-sided supply of 4.1 V to 5.5 V.

#### iC-PNH26xx Series

Optical radius 11.0 mm, code disc Ø 26.0 mm; iC-PNH2612: 512 CPR (2x 256/255/240 CPR) iC-PNH2624: 1024 CPR (2x 512/510/480 CPR) iC-PNH2628: 128 CPR (2x 64/63/56 CPR)

#### iC-PNH33xx Series

Optical radius 14.5 mm, code disc  $\varnothing$  33.2 mm; iC-PNH3312: 512 CPR (2x 256/255/240 CPR)

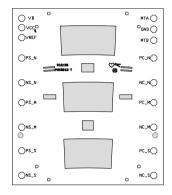
iC-PNH3348 EncoderBlue®: 2048 CPR (2x 1023/1024/992 CPR)

A separated datasheet is available for iC-PNH EncoderBlue® series devices.

#### iC-PNH39xx Series

Optical radius 17.5 mm, code disc Ø 39.0 mm; iC-PNH3912: 512 CPR (2x 256/255/240 CPR) iC-PNH3948: 2048 CPR (2x 1024/1023/992 CPR)

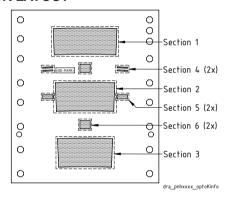
EncoderBlue is a trademark of iC-Haus GmbH.


### PHASED ARRAY NONIUS ENCODERS



Rev F3, Page 3/15

#### **PACKAGING INFORMATION**


#### **PAD LAYOUT**



## PAD FUNCTIONS No. Name Function

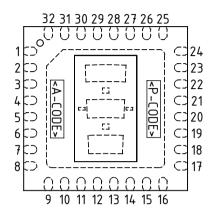
Chip layout example. Grey sections represent sensor layout areas; fill factors vary.

#### **SENSOR LAYOUT**



#### **AOI CRITERIA**

| <pre><die mark=""> iC PNH2612</die></pre> | <section><br/>1, 3<br/>2<br/>4, 5, 6</section> | <pre><area class=""/>' A25 A16 A40</pre> |
|-------------------------------------------|------------------------------------------------|------------------------------------------|
| iC PNH2624                                |                                                | see iC-PNH2612                           |
| iC PNH2628                                |                                                | see iC-PNH2612                           |
| iC PNH3312                                | 1, 3                                           | A25                                      |
|                                           | 2                                              | A16                                      |
|                                           | 4, 5, 6                                        | A40                                      |
| iC PNH3912                                |                                                | see iC-PNH3312                           |
| iC PNH3948                                | 1, 3                                           | A25                                      |
|                                           | 2                                              | A16                                      |
|                                           | <del>-</del>                                   | A40                                      |
|                                           | 4, 5, 6                                        | A40                                      |


<sup>&</sup>lt;sup>1</sup> Selection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

### PHASED ARRAY NONIUS ENCODERS



Rev F3, Page 4/15

#### **PIN CONFIGURATION** oQFN32-5x5 (5 mm x 5 mm)



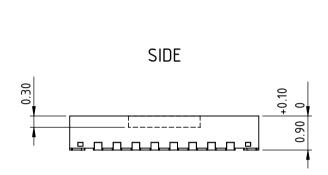
#### **PIN FUNCTIONS**

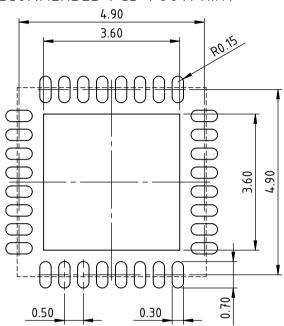
| No.  | Name              | Function                           |
|------|-------------------|------------------------------------|
| 1    | VCC               | +4.15.5 V Supply Voltage           |
| 2    | VREF              | Reference Voltage Output           |
| 3    | PS_N              | N-Track Sine +                     |
| 4    | NS_N              | N-Track Sine -                     |
|      | _                 | M-Track Sine +                     |
|      | _                 | M-Track Sine -                     |
|      | _                 | S-Track Sine +                     |
|      |                   | S-Track Sine -                     |
|      | n.c. <sup>1</sup> |                                    |
|      |                   | S-Track Cosine -                   |
|      |                   | S-Track Cosine +                   |
|      | _                 | M-Track Cosine -                   |
|      | _                 | M-Track Cosine +                   |
|      | _                 | N-Track Cosine -                   |
|      | _                 | N-Track Cosine +                   |
| _    | MTB               | 3                                  |
|      | GND               |                                    |
|      | MTA               | Digital Output A                   |
| 2631 |                   |                                    |
| 32   | VB <sup>2</sup>   | +1.85.5 V Auxiliary Supply Voltage |
|      | BP <sup>3</sup>   | Backside paddle                    |

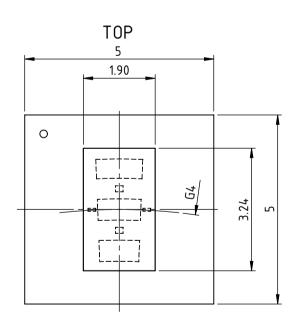
IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

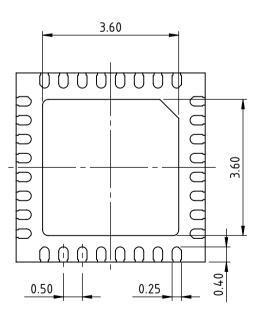
<sup>1</sup> Pin numbers marked n.c. are not connected.
2 If there is no auxiliary supply available, connect pin 32 either to VCC or GND (for chip release Y, and X). For chip release Z1, do not wire pin 32 or connect pin 32 to GND.

<sup>&</sup>lt;sup>3</sup> Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.





Rev F3, Page 5/15


#### **PACKAGE DIMENSIONS**


Drawing valid for chip release Z1, and Y.

### RECOMMENDED PCB-FOOTPRINT



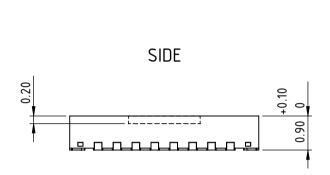


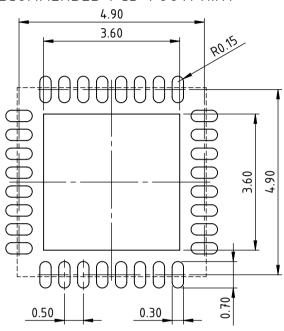


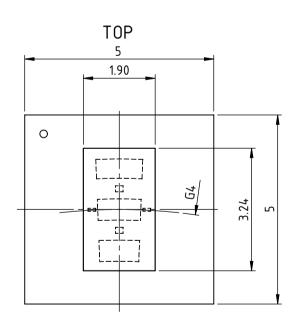


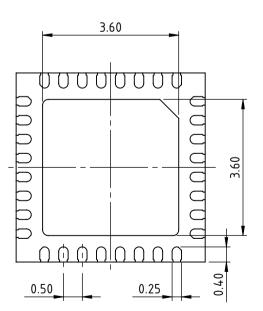
**BOTTOM** 

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: ±70µm / ±1° (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description). Maximum molding excess +20µm / -75µm versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability.





Rev F3, Page 6/15


#### **PACKAGE DIMENSIONS**


Drawing valid for chip release X.

### RECOMMENDED PCB-FOOTPRINT









**BOTTOM** 

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: ±70µm / ±1° (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description). Maximum molding excess +20µm / -75µm versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability.



Rev F3, Page 7/15

#### **ABSOLUTE MAXIMUM RATINGS**

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

| Item | Symbol | Parameter                       | Conditions                            |      |           | Unit |
|------|--------|---------------------------------|---------------------------------------|------|-----------|------|
| No.  |        |                                 |                                       | Min. | Max.      |      |
| G001 | VCC    | Voltage at VCC, VB              |                                       | -0.3 | 6         | V    |
| G002 | I(VCC) | Current in VCC, VB              |                                       | -20  | 20        | mA   |
| G003 | V()    | Pin Voltage, all signal outputs |                                       | -0.3 | VCC + 0.3 | V    |
| G004 | I()    | Pin Current, all signal outputs |                                       | -20  | 20        | mA   |
| G005 | Vd()   | ESD Susceptibility, all pins    | HBM, 100 pF discharged through 1.5 kΩ |      | 2         | kV   |
| G006 | Tj     | Junction Temperature            |                                       | -40  | 150       | °C   |
| G007 | Ts     | Chip Storage Temperature        |                                       | -40  | 150       | °C   |

#### THERMAL DATA

Operating conditions: VCC = 4.1...5.5 V

| Item | Symbol | Parameter                           | Conditions                                                                                                  |      |      |            |    |
|------|--------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|------------|----|
| No.  |        |                                     |                                                                                                             | Min. | Тур. | Max.       |    |
| T01  | Та     | Operating Ambient Temperature Range | package oQFN32-5x5                                                                                          | -40  |      | 125        | °C |
| T02  | Ts     | Storage Temperature Range           | package oQFN32-5x5                                                                                          | -40  |      | 125        | °C |
| T03  | Tpk    | Soldering Peak Temperature          | package oQFN32-5x5;<br>tpk < 20 s, convection reflow<br>tpk < 20 s, vapor phase soldering                   |      |      | 245<br>230 | °C |
|      |        |                                     | MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details. |      |      |            |    |



Rev F3, Page 8/15

#### **ELECTRICAL CHARACTERISTICS**

Operating conditions: VCC = 4.1...5.5 V. VB = 0 V. Ti = -40..125 °C. unless otherwise stated

| ltem<br>No. | Symbol        | Parameter                                             | Conditions                                                                                  | Min.        | Тур.  | Max.       | Unit     |
|-------------|---------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|-------|------------|----------|
| Total       | Device        |                                                       |                                                                                             |             | ,     | ,          |          |
| 001         | VCC           | Permissible VCC Supply Voltage                        | regular operation                                                                           | 4.1         |       | 5.5        | V        |
| 002         | I(VCC)        | VCC Supply Current                                    | no load, Vout() < Vout()mx                                                                  |             | 9.5   | 15         | mA       |
| Photo       | sensors       |                                                       |                                                                                             | II          |       |            |          |
| 101         | $\lambda$ ar  | Spectral Application Range                            | $Se(\lambda ar) = 0.25 \times S(\lambda pk)$                                                | 400         |       | 950        | nm       |
| 102         | S(\(\lambda\) | Spectral Sensitivity                                  | $\lambda_{\text{LED}}$ = 460 nm                                                             |             | 0.25  |            | A/W      |
|             | ` ,           |                                                       | $\lambda_{\text{LED}} = 740  \text{nm}$                                                     |             | 0.5   |            | A/W      |
|             |               |                                                       | $\lambda_{LED}$ = 850 nm                                                                    |             | 0.35  |            | A/W      |
| 103         | $\lambda$ pk  | Peak Sensitivity Wavelength                           |                                                                                             |             | 680   |            | nm       |
|             | current Am    | ·                                                     |                                                                                             |             | 1     |            |          |
| 201         | lph()         | Permissible Photocurrent<br>Operating Range           |                                                                                             | 0           |       | 1120       | nA       |
| 202         | $\eta$ ()r    | Photo Sensitivity (light-to-voltage conversion ratio) | $\lambda_{LED}$ = 740 nm                                                                    |             | 0.3   |            | V/µV     |
| 203         | Z()           | Equivalent Transimpedance Gain                        | Z = Vout() / lph()                                                                          | 0.7         | 1.0   | 1.4        | MΩ       |
| 204         | TCz           | Temperature Coefficient of<br>Transimpedance Gain     |                                                                                             |             | -0.12 |            | %/°(     |
| 205         | ΔZ()pn        | Transimpedance Gain Matching                          | inside channel: P vs. corresponding N output, or sine vs. cosine output                     | -3          |       | 3          | %        |
| 206         | △Vout()pn     | Signal Matching                                       | no illumination; any output vs. any output P output vs. corresponding N output              | -35<br>-2.5 |       | 35<br>2.5  | mV<br>mV |
| 207         | fc()hi        | Cut-off Frequency (-3 dB)                             |                                                                                             |             | 400   |            | kHz      |
| 208         | VNoise()      | RMS Output Noise                                      | illuminated to 500 mV signal level above dark level, 500 kHz band width                     |             | 0.5   |            | mV       |
| Signa       | l Outputs     |                                                       |                                                                                             |             |       |            |          |
| 301         | Vout()mx      | Permissible Max. Output Voltage                       | refer to Figure 1                                                                           | 2.0         |       |            | V        |
| 302         | lout()mx      | Permissible Max. Load Current                         |                                                                                             | -100        |       | 250        | μA       |
| 303         | Vout()d       | Dark Signal Level                                     | no illumination, I() ≤ 50 μA                                                                | 575         | 770   | 1000       | mV       |
| 304         | Isc()hi       | Short-Circuit Current hi                              | load current to ground                                                                      | 100         | 420   | 1300       | μA       |
| 305         | lsc()lo       | Short-Circuit Current lo                              | load current to IC                                                                          | 250         | 480   | 700        | μA       |
| 306         | Ri()          | Internal Output Resistance                            | f= 1 kHz                                                                                    | 70          | 110   | 180        | Ω        |
| 307         | ton()         | Power-On Settling Time                                | $VCC = 0 V \rightarrow 5 V$                                                                 |             |       | 100        | μs       |
| Refer       | ence Voltage  | VREF                                                  |                                                                                             | II.         |       |            |          |
| 401         | VREF          | Reference Voltage                                     | I(VREF) = -100+300 μA                                                                       | 575         | 770   | 1000       | mV       |
| 402         | dVout()       | Load Balancing                                        | I(VREF) = -100+300 μA                                                                       | -10         |       | +10        | mV       |
| 403         | lsc()hi       | Short-Circuit Current hi                              | load current to ground                                                                      | 200         | 420   | 2000       | μA       |
| 404         | lsc()lo       | Short-Circuit Current lo                              | load current to IC                                                                          | 0.5         | 4.5   | 10         | mA       |
| Digita      | Outputs M     | TA, MTB and Auxiliary Supply VE                       | 3 (chip release Y, and X)                                                                   |             |       | ,          |          |
| 601         | VB            | Auxiliary Supply VB for MTA/MTB Operation             | VCC < 0.5 V, or as #001 with 100 μs ahead                                                   | 1.8         |       | 5.5        | V        |
| 602         | I(VB)         | Supply Current in VB                                  | VCC = 1.8 +5.5 V, MTA, MTB not loaded                                                       |             |       | 300        | μA       |
| 603         | I(VB)cyc      | Averaged Supply Current in VB                         | VCC = 0 V, VB on-cycle 15 µs, illuminated for 3 µs, MTA, MTB not loaded                     |             |       | 80         | μA       |
| 604         | ton(VB)       | VB Power-Up Settling Time for MTA/MTB Operation       | VB = 0 V $\rightarrow$ 1.8 V, without illumination; refer to Figure 4                       |             |       | 10         | μs       |
| 605         | ton(VCC)      | VCC Power-Up Settling Time for MTA/MTB Operation      | VB = 0 V, without illumination; refer to Figure 3                                           |             |       | 100        | μs       |
| 606         | toff(VCC)     | VCC Power-Down Delay Time for MTA/MTB Operation       | Validity delay after VCC < 0.5 V; refer to Figure 5                                         |             |       | 40         | μs       |
| 607         | Vs()hi        | Saturation Voltage hi at MTA, MTB                     | VB = 0 V, Vs()hi = VCC - V(), I() = -130 μA<br>VB as #601, Vs()hi = VB - V(), I() = -130 μA |             |       | 0.4<br>0.4 | V        |



Rev F3, Page 9/15

#### **ELECTRICAL CHARACTERISTICS**

Operating conditions: VCC = 4.1...5.5 V, VB = 0 V, Tj = -40..125 °C, unless otherwise stated

| Item<br>No. | Symbol      | Parameter                          | Conditions                                                                                                                                            | Min. | Тур.           | Max.      | Unit                               |
|-------------|-------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----------|------------------------------------|
| 608         | Vs()lo      | Saturation Voltage Io at MTA, MTB  | VB = 0 V or as #601; I() = 200 μA                                                                                                                     |      |                | 0.4       | V                                  |
| 609         | ton_LED     | Recommended Illumination Time      | VB = 0 V or as #601;<br>Gray-code scanning by DA, DB, sensors:<br>Iph(DA, DB) = 100260 nA, Iph(DR) = 180 nA<br>See Figure 2 and note on verification. |      |                |           | μs                                 |
| 610         | tp1()       | Output Validity at MTA, MTB        | VB = 0 V or as #601; see Figure 6;<br>output stable for readout after LED on                                                                          |      |                | 3         | μs                                 |
| 611         | tp2()       | Output Validity at MTA, MTB        | VB = 0 V or as #601; see Figure 6;<br>output stable for readout after LED off                                                                         | 1    |                |           | μs                                 |
| 612         | Vout()max   | Maximum Output Voltage at MTA, MTB | VB = 0 V<br>VB as #601                                                                                                                                |      |                | VCC<br>VB | V                                  |
| Device      | Specific: i | C-PNH2612 (chip release Y)         | 1                                                                                                                                                     |      |                |           | <u> </u>                           |
| V101        | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.076<br>0.03  |           | mm²<br>mm²                         |
| V102        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 2.9            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH2624 (chip release Z, Y)      |                                                                                                                                                       | Ш    |                |           |                                    |
| V201        |             | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.067<br>0.03  |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V202        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 3.3            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH2624 (chip release X)         |                                                                                                                                                       | Ш    |                |           |                                    |
| V2X01       | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.058<br>0.03  |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V2X02       | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 3.8            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH2628 (chip release Y)         |                                                                                                                                                       |      | ,              |           | 1                                  |
| V301        | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.052<br>0.03  |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V302        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 4.2            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH3312 (chip release Y)         |                                                                                                                                                       | "    |                |           |                                    |
| V401        | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.10<br>0.03   |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V402        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 2.2            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH3912 (chip release Y)         |                                                                                                                                                       |      | ,              |           | ,                                  |
| V501        | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.064<br>0.029 |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V502        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 3.5            |           | mW/<br>cm <sup>2</sup>             |
| Device      | Specific: i | C-PNH3948 (chip release Y)         | 1                                                                                                                                                     |      |                |           | 1                                  |
| V601        | Aph()       | Radiant Sensitive Area             | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks                                                                                                 |      | 0.060<br>0.029 |           | mm <sup>2</sup><br>mm <sup>2</sup> |
| V602        | E()mxr      | Irradiance For Max. Signal Level   | $\lambda_{\text{LED}}$ = 740 nm, Vout() not saturated                                                                                                 |      | 3.7            |           | mW/<br>cm <sup>2</sup>             |

### PHASED ARRAY NONIUS ENCODERS



Rev F3, Page 10/15

#### **ELECTRICAL CHARACTERISTICS**

Operating conditions: VCC = 4.1...5.5 V, VB = 0 V, Tj = -40..125 °C, unless otherwise stated

| Item                                         | Symbol | bol Parameter Conditions         |                                                       |      | Unit           |      |                                    |
|----------------------------------------------|--------|----------------------------------|-------------------------------------------------------|------|----------------|------|------------------------------------|
| No.                                          |        |                                  |                                                       | Min. | Тур.           | Max. |                                    |
| Device Specific: iC-PNH3948 (chip release X) |        |                                  |                                                       |      |                |      |                                    |
| V6X01                                        | Aph()  |                                  | sensors of N/M/S tracks<br>sensors of MTA, MTB tracks |      | 0.055<br>0.029 |      | mm <sup>2</sup><br>mm <sup>2</sup> |
| V6X02                                        | E()mxr | Irradiance For Max. Signal Level | $\lambda_{LED}$ = 740 nm, Vout() not saturated        |      | 4.0            |      | mW/<br>cm <sup>2</sup>             |

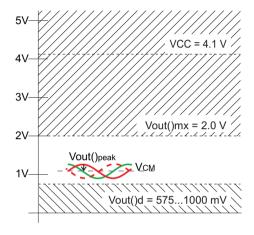



Figure 1: Permissible maximum output voltage range and example of typical output voltage.

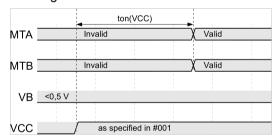



Figure 3: Outputs MTA and MTB operated from main supply VCC.

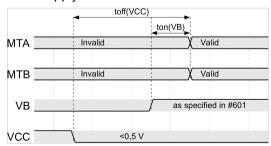



Figure 5: Intersection from main supply VCC to auxiliary supply VB.

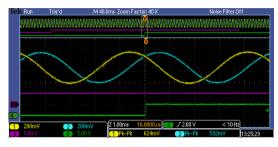



Figure 2: Regular Gray code output at MTA (CH3, magenta) and MTB (CH4, green) during normal operation; shown with PS\_M (CH1, yellow) and PC\_M (CH2, blue).

**Note:** With a state of the art optical path and assembly of the encoder, the operating range for the signal output at MTA/MTB may be extended to 1/3 of the nominal illumination level (i.e. LED current at 33%)

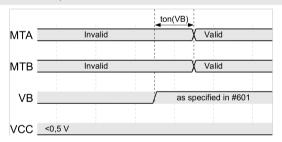



Figure 4: Outputs MTA and MTB operated from auxiliary supply VB.

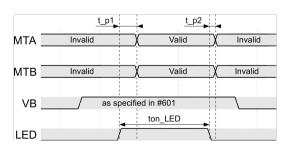



Figure 6: MTA and MTB output validity depending on LED flash.



Rev F3, Page 11/15

#### **DEVICE OVERVIEW**

| Device                                                   | CPR                                                      | Code Disc         |          | OR 1       | Code Radius      | Resolution <sup>2</sup> | Error Tol. <sup>3</sup> |  |
|----------------------------------------------------------|----------------------------------------------------------|-------------------|----------|------------|------------------|-------------------------|-------------------------|--|
|                                                          | Master                                                   | P/O Code          | Material | [mm]       | begin / end [mm] | [bit]                   | [e°]                    |  |
| Ø 26 H-Series                                            |                                                          | (disc diameter 26 | 0 mm ho  | ro holo 1: | 1.6 mm)          |                         |                         |  |
|                                                          |                                                          | •                 |          |            | ,                |                         |                         |  |
| iC-PNH2628                                               | 2x64                                                     | PNH6S 26-128      | glass    | 10.905     | 9.4 / 12.4       | 21                      | ± 19.6                  |  |
| iC-PNH2612                                               | 2x256                                                    | PNH3S 26-512      | glass    | 10.905     | 9.4 / 12.4       | 23                      | $\pm$ 9.8               |  |
| iC-PNH2624                                               | 2x512                                                    | PNH9S 26-1024     | glass    | 10.905     | 9.4 / 12.4       | 24                      | ± 4.9                   |  |
| Ø 33 H-Series                                            | Ø 33 H-Series (disc diameter 33.2 mm, bore hole 18.0 mm) |                   |          |            |                  |                         |                         |  |
| iC-PNH3312                                               | 2x256                                                    | PNH2S 33-512      | glass    | 14.5       | 13.0 / 16.0      | 23                      | $\pm$ 9.8               |  |
| iC-PNH3348 <sup>4</sup>                                  | 2x1024                                                   | PNH1S 33-2048     | glass    | 14.5       | 13.0 / 16.0      | 25                      | ± 4.9                   |  |
| Ø 39 H-Series (disc diameter 39.0 mm, bore hole 18.0 mm) |                                                          |                   |          |            |                  |                         |                         |  |
| iC-PNH3912                                               | 2x256                                                    | PNH8S 39-512      | glass    | 17.5       | 16.0 / 19.0      | 23                      | ± 4.9                   |  |
| iC-PNH3948                                               | 2x1024                                                   | PNH4S 39-2048     | glass    | 17.5       | 16.0 / 19.0      | 25                      | ± 4.9                   |  |

<sup>&</sup>lt;sup>1</sup> Optical center radius.

Table 1: Device overview

<sup>&</sup>lt;sup>2</sup> Angle resolution per single turn; interpolated by iC-MNF with 14 bit resolution.

<sup>&</sup>lt;sup>3</sup> Permissible maximum track-to-track signal phase deviation in electrical degree per master signal cycle.

<sup>&</sup>lt;sup>4</sup> EncoderBlue<sup>®</sup>. EncoderBlue is a trademark of iC-Haus GmbH. Device availability on request.



Rev F3, Page 12/15

#### **APPLICATION CIRCUITS**

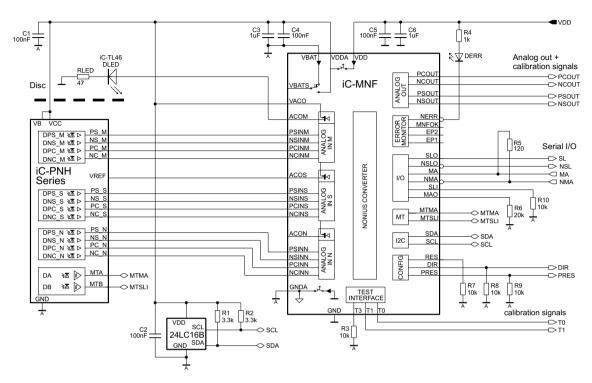



Figure 7: Application example of absolute encoder circuit.

#### **DESIGN REVIEW: Notes On Chip Functions**

| iC-PNHxxxx. |                          |                                                 |  |  |  |
|-------------|--------------------------|-------------------------------------------------|--|--|--|
| No.         | Function, Parameter/Code | Description and Application Hints               |  |  |  |
| 1           |                          | Refer to datasheet iC-PNH3348 release B1, 2014. |  |  |  |

Table 2: Notes on chip functions regarding iC-PNH series chip release 0.

| iC-PNHxxxxZ1 |                          |                                                              |  |  |  |  |
|--------------|--------------------------|--------------------------------------------------------------|--|--|--|--|
| No.          | Function, Parameter/Code | Description and Application Hints                            |  |  |  |  |
| 1            | HD Phased Array          | Chip release utilizes a high definition phased array layout. |  |  |  |  |

Table 3: Notes on chip functions regarding iC-PNH series chip releases Z1.

| iC-PNHx | iC-PNHxxxx Y, X          |                                                                                                                     |  |  |  |  |
|---------|--------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| No.     | Function, Parameter/Code | Description and Application Hints                                                                                   |  |  |  |  |
| 1       | Supply VB                | Auxiliary supply input VB connects to reserved pin 32. For recommendations on wiring, refer to footnotes on Page 4. |  |  |  |  |
| 2       | Outputs MTA and MTB      | Refer to Elec. Char. for changes of specifications.                                                                 |  |  |  |  |
| 3       | Package Dimensions       | Chip release X: thickness of glass lid changed to 200 µm.                                                           |  |  |  |  |

Table 4: Notes on chip functions regarding iC-PNH series chip release Y, and X.



Rev F3, Page 13/15

#### **REVISION HISTORY**

| Rel. | Rel. Date <sup>1</sup> Chapter Modification |  | Modification                            | Page |
|------|---------------------------------------------|--|-----------------------------------------|------|
| A1   | 2011-07-25                                  |  | Initial release introducing iC-PNH3348. | all  |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|------|------------------------|---------|-----------------------------------------------|------|
| B1   | 2014-05-22             |         | Refer to the revision history of the release. |      |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                   | Page |
|------|------------------------|---------|--------------------------------|------|
| C1   | 2015-01-27             | All     | Introduction of iC-PNH series. | all  |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|------|------------------------|---------|-----------------------------------------------|------|
| C3   | 2016-01-18             |         | Refer to the revision history of the release. |      |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|------|------------------------|---------|-----------------------------------------------|------|
| C4   | 2016-07-20             |         | Refer to the revision history of the release. |      |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|------|------------------------|---------|-----------------------------------------------|------|
| D1   | 2017-11-08             |         | Refer to the revision history of the release. |      |

| Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|------|------------------------|---------|-----------------------------------------------|------|
| D2   | 2018-01-17             |         | Refer to the revision history of the release. |      |

| I | Rel. | Rel. Date <sup>1</sup> | Chapter | Modification                                  | Page |
|---|------|------------------------|---------|-----------------------------------------------|------|
|   | 03   | 2018-08-17             |         | Refer to the revision history of the release. |      |

| Rel. | Rel. Date <sup>1</sup> | Chapter               | Modification                                                                                                                                              | Page |
|------|------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| E1   | 2019-05-24             | PACKAGING INFORMATION | Package drawing added for chip release X                                                                                                                  | 5    |
|      |                        | CHARACTERISTICS       | Items 605 to 609: update of conditions Item 601: update of condition Item 605 and 606: added as new item Figures 3, 4, 5, and 6 added on power-up timings | 8ff  |

| Rel. | Rel. Date <sup>1</sup> | Chapter               | Modification       | Page |
|------|------------------------|-----------------------|--------------------|------|
| E2   | 2020-03-02             | PACKAGING INFORMATION | AOI criteria added | 3    |

| Rel. | Rel. Date <sup>1</sup> | Chapter                       | Modification                                                                                                                                                         | Page |
|------|------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| F1   | 2021-02-02             | PACKAGING INFORMATION         | Update of AOI criteria: hyperlink to customer information in footnote                                                                                                | 3    |
|      |                        | PACKAGE DIMENSIONS            | Update of package drawings and footnote                                                                                                                              | 5, 6 |
|      |                        | THERMAL DATA                  | Item T03: hyperlink to customer information                                                                                                                          | 7    |
|      |                        | ELECTRICAL<br>CHARACTERISTICS | V100ff: subtitles edited for chip release<br>Sections V2X and V6X added (on chip release X)<br>Figure 2 and note box added on verification of MTA/MTB output signals | 10   |
|      |                        | DEVICE OVERVIEW               | Table 1 update for resolution of iC-MNF                                                                                                                              | 11   |
|      |                        | APPLICATION CIRCUITS          | Figure 7 updated to iC-MNF                                                                                                                                           | 12   |
|      |                        | ORDERING INFORMATION          | Listing updated                                                                                                                                                      | 15   |

| Rel. | Rel. Date <sup>1</sup> | Chapter                    | Modification                                                    | Page |
|------|------------------------|----------------------------|-----------------------------------------------------------------|------|
| F2   | 2023-10-26             | ELECTRICAL CHARACTERISTICS | Items 003, 004 removed Item 205: update of condition and limits | 8    |
|      |                        | APPLICATION CIRCUITS       | Figure 7: correction of VBAT wiring                             | 12   |

| Rel. | Rel. Date <sup>1</sup> | Chapter              | Modification     | Page |
|------|------------------------|----------------------|------------------|------|
| F3   | 2023-11-28             | APPLICATION CIRCUITS | Figure 7 updated | 12   |

<sup>&</sup>lt;sup>1</sup> Release Date format: YYYY-MM-DD



Rev F3, Page 14/15

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website <a href="https://www.ichaus.com/DUN">www.ichaus.com/DUN</a> and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).



Rev F3, Page 15/15

#### **ORDERING INFORMATION**

| Туре           | Package                                                                             | Options                                                                                                                                                                                                                                                   | Order Designation                                                                                               |
|----------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| iC-PNHxxxx     | 32-pin optoQFN,<br>5 mm x 5 mm,<br>thickness 0.9 mm<br>RoHS compliant               | xxxx = device version                                                                                                                                                                                                                                     | iC-PNHxxxx oQFN32-5x5                                                                                           |
| Code Disc      | Glass disc 1.0 mm                                                                   | nn = design number<br>aa = diameter<br>cccccc = master track CPR                                                                                                                                                                                          | PNHnnS aa-cccc                                                                                                  |
|                |                                                                                     | for iC-PNH3312 (2x 256 CPR)<br>for iC-PNH2612 (2x 256 CPR)<br>for iC-PNH3948 (2x 1024 CPR)<br>for iC-PNH2624, chip rel. Z1, Y<br>(2x 512 CPR)<br>for iC-PNH2624, chip rel. X<br>(2x 512 CPR)<br>for iC-PNH2628 (2x 64 CPR)<br>for iC-PNH3912 (2x 256 CPR) | PNH2S 33-512<br>PNH3S 26-512<br>PNH4S 39-2048<br>PNH5S 26-1024<br>PNH9S 26-1024<br>PNH6S 26-128<br>PNH8S 39-512 |
| Evaluation Kit | Kit with Scanner Module IC273 (61 mm x 64 mm),<br>LED Module IC274 and<br>Code Disc | xxxx = device version                                                                                                                                                                                                                                     | iC-PNHxxxx EVAL IC273                                                                                           |
| Illumination   | Infrared LED module<br>(28 mm x 29 mm)                                              | with iC-SD85 (850 nm)                                                                                                                                                                                                                                     | iC-SD85 EVAL IC274                                                                                              |
|                | Blue LED module<br>(28 mm x 29 mm)                                                  | with iC-TL46 (460 nm)                                                                                                                                                                                                                                     | iC-TL46 EVAL IC274                                                                                              |
| Mother Board   | Adapter PCB (80 mm x 110 mm)                                                        | incl. ribbon cable                                                                                                                                                                                                                                        | iC277 EVAL IC277                                                                                                |
| Adapter Board  | Adapter PCB,<br>connects IC273 to MN1D<br>(41 mm x 41 mm)                           | incl. ribbon cable                                                                                                                                                                                                                                        | iC306 EVAL IC306                                                                                                |

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18 Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim Web: https://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales\_partners