

Rev C2, Page 1/16

FEATURES

- High synchronism and technical reliability due to monolithic construction featuring on-chip photosensors
- Scanning with constant-light evaluation at a pitch of 600 μm
- Photocurrent amplifiers with high cut-off frequency
- Adjustable illumination control with 40 mA LED driver ensures constant receiver power over life
- Monitoring of safe operating range with alarm message (e.g. EOL message on LED control error)
- Serial data output via extended SSI interface
- Parallel 5 bit data output as Gray or binary code
- Adjustable phase of MSB track selects for sense of Gray code direction
- Selectable all-track bit inversion
- Supports chain circuits of multiple devices including synchronisation options
- Integrated test aids
- ♦ Single 4 to 5.5 V supply, low power consumption
- Extended operating temperature range of -40 to 125 °C

APPLICATIONS

- Scanning with constant-light evaluation for optical encoders
- Low-res singleturn encoders
- Multiturn encoders

PACKAGES

32-pin optoQFN 5 mm x 5 mm RoHS compliant

DESCRIPTION

iC-LV is an optoelectronic encoder IC for absolute linear and angle measuring systems such as glass scales and shaft encoders, for example. Photosensors, amplifiers and comparators for 5 tracks at a pitch of 600 μ m and a reference photosensor operating the LED power control are monolithically integrated on the chip.

The internal comparator outputs switch to high when the amplified photocurrents exceed a given threshold (constant light evaluation). This threshold can be adjusted using an external resistor at RSET; alternatively, if RSET is not wired an internal resistor is used.

The internal or external resistor also establishes a setpoint for the LED current control which irrespective of temperature or the effects of aging keeps the optical receive power constant. A driver stage enables either a transmitting LED with a series resistor

to be directly connected to the device or operates an external transistor to generate higher currents.

Track information can be read out in parallel (either in Gray or binary code) or serially via an SSI protocol. Here, any number of iC-LVs can be cascaded and synchronized with one another; data is then output as a binary word (requiring Gray code discs).

A watchdog generates an alarm message via the error output if the LED current control range is exceeded. The open-drain error output can be wired to a bus; the signal is then low active. The serial data output can also be complemented by the error bit.

All inputs and outputs are protected against destruction by ESD. Two different test modes can be selected by pin and permit a complete test of functions with the exception of the photosensors.

PACKAGING INFORMATION

PAD LAYOUT

PAD FUNCTIONS No. Name Function

RC^{1}	RC Network for SSI Monoflop
	+4+5.5 V Analog Supply Voltage
VDD	+4+5.5 V Digital Supply Voltage
LVCC	+4+5.5 V LED Driver Supply Voltage
NINV	Bit-wise Inversion Input (low active)
MODE	Operating Mode Selection Input
TEST	Test Mode Enable Input (high active)
RSET ¹	LED Power Control Adjustment
NERR	Error Output (low active)
NDIR	Direction Input (low active)
LED	LED Power Control Output
	(high-side current source)
AGND ³	Analog Ground
GND	Digital Ground
SOUT	Serial Data Output (SSI)
	/ Data Output D4
SERIN	Serial Data Input (SSI) / Data Outp. D3
SCLK	Clock Input (SSI) / Data Output D2
SYNM0	Synchronisation Mode Input
	/ Data Output D1
SYNM1	Synchronisation Mode Input
•	/ Data Output D0
SEEN	Serial Error Bit Enable Inp. (high act.)

¹ Wiring is optional. ² Pad must be connected to VDD. ³ Pad must be connected to GND.

iC-LV **5-BIT OPTO ENCODER**

Rev C2, Page 3/16

SENSOR LAYOUT

AOI CRITERIA <die mark=""></die>	<section></section>	<area class=""/> 1
iC LV Y1	1	A40

¹ Selection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

PIN CONFIGURATION oQFN32-5x5

PIN FUNCTIONS

No. Name Function

1	LED	LED Power Control Output
		(high-side current source)
2	GND	Ground
3	SOUT	Serial Data Output (SSI)
		/ Data Output D4
4	SERIN	Serial Data Input (SSI) / Data Outp. D3
5	SCLK	Clock Input (SSI) / Data Output D2
6	SYNM0	Synchronisation Mode Input
		/ Data Output D1
7	SYNM1	Synchronisation Mode Input
		/ Data Output D0
8	SEEN	Serial Error Bit Enable Inp. (high act.)
9	n.c. ¹	
18	VDD	+4+5.5 V Supply Voltage
19	NINV	Bit-wise Inversion Input (low active)
20	MODE	Operating Mode Selection Input
21	TEST	Test Mode Enable Input (high active)
22	RSET	LED Power Control Adjustment
		(wiring is optional)
23	NERR	Error Output (low active)
24	NDIR	Direction Input (low active)
25	n.c. ¹	
	BP	Backside paddle ²

IC top marking: <P-CODE> = product code, <A-CODE> = assembly and lot code (subject to changes);

¹ Pin numbers marked n.c. are not in use.
² The backside paddle may have a single link to GND. A current flow across the paddle is not permissible.

Rev C2, Page 4/16

PACKAGE DIMENSIONS oQFN32-5x5

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70\mu$ m / $\pm 1^{\circ}$ (with respect to center of backside pad). Maximum molding excess $\pm 20\mu$ m / -75μ m versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. $dra_oqfn32-5x5-4_lv_y1_pack_1, 10.1$

Rev C2, Page 5/16

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

ltem	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	V()	Voltage at VCCA		0.3	6	V
G002	V()	Voltage at VDD		VCCA	VCCA	V
G003	V()	Voltage at LVCC, LED, SOUT, SERIN, SCLK, SYNM0, SYNM1, SEEN, NDIR, NERR, RSET, TEST, MODE, NINV, RC		-0.3	VCCA + 0.3	V
G004	Ic()	Clamp Diode Current in LED, SOUT, SERIN, SCLK, SYNM0, SYNM1, SEEN, NDIR, NERR, RSET, TEST, MODE, NINV, RC	SERIN, SCLK, SYNM0, SYNM1 with input function	-4	4	mA
G005	I()	Current in SOUT, SERIN, SCLK, SYNM0, SYNM1, RSET, RC	SERIN, SCLK, SYNM0, SYNM1 with output function	-4	4	mA
G006	I()	Current in LVCC to LED	$V(LVCC) \leq VCCA$	0	50	mA
G007	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through $1.5 k\Omega$		2	kV
G008	Tj	Junction Temperature		-40	125	°C
G009	Ts	Chip Storage Temperature		-40	125	°C

THERMAL DATA

Operating Conditions: VCCA, VDD, LVCC = 4...5.5 V

Item	Symbol	Parameter Conditions				Unit	
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	oQFN32-5x5	-40		110	°C
T02	Ts	Permissible Storage Temperature Range	oQFN32-5x5	-40		110	°C
Т03	Tpk	Soldering Peak Temperature oQFN32-5x5	tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.			245 230	℃ ℃

Rev C2, Page 6/16

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device	1	1	ш		1	<u>I</u>
001	VDD	Permissible Supply Voltage VCCA, VDD, LVCC		4.0	5	5.5	V
002	I(VDD)	Supply Current in VCCA, VDD	LED control active: R(RSET/AGND) = 24 k Ω , MODE = hi, TEST = lo; l(D0.4) \leq 8 nA		2	5	mA
003	Vcz()hi	Clamp Voltage hi at all pins versus GNDA	I() = 4 mA			11	V
004	Vc()hi	Clamp Voltage hi at inputs: RC, NINV, MODE, TEST, RSET, NERR, NDIR, SEEN, SYNM1, SYNM0, SCLK, SERIN, SOUT	Vc()hi = V() - V(VDD), I() = 4 mA	0.3		1.2	V
005	Vc()lo	Clamp Voltage lo at all pins	I() = -4 mA	-1.2		-0.3	V
TTL Ir	puts: SYN	M1, SYNMO, SCLK, SERIN, SEEN	, NDIR, TEST, MODE, NINV				
006	Vt()hi	Threshold Voltage hi	MODE = hi			2	V
007	Vt()lo	Threshold Voltage Io	MODE = hi, VDD = 4.55.5 V MODE = hi, VDD < 4.5 V	0.8 0.7			V V
008	Vt()hys	Threshold Voltage Hysteresis	MODE = hi	300	500		mV
009	lpu()	Pull-up Current in SCLK, SERIN, SEEN, NDIR, MODE, NINV	V() = 0 VCCA – 1 V, MODE = hi	-62	-30	-4	μA
010	lpu()	Pull-up Current in SYNM1, SYNM0	V() = 0 VCCA – 1 V, MODE = hi	-80		-4	μA
011	lpd()	Pull-down Current in TEST	V() = 1 V VCCA, MODE = hi	3	31	75	μA
Outpu	its D0 to D4	4: SYNM1, SYNM0, SCLK, SERIN,	SOUT				
012	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(); I() = -4 mA, MODE = Io			500	mV
013	Vs()lo	Saturation Voltage lo	l() = 4 mA l() = 1.6 mA			500 400	mV mV
Error	Output NE	RR					
014	Vs()lo	Saturation Voltage lo	I() = 4 mA I() = 1.6 mA			500 400	mV mV
015	R()pu	Permissible Pull-up Load			10		kΩ
Curre	nt Compara	ators, Tracks 04					
301	IDREF	Reference Sensor Photocurrent			100	160	nA
302	IDD	Compensation Sensor Dark Current			20		рА
303	Hys	Switch Hysteresis Referred to Reference Current IDREF	I(D04) = IDD IDREF	10	17	22	%
Photo	sensors ar	nd Amplifiers D04, DREF					u
401	$S(\lambda)$	Spectral Sensitivity	λ = 880 nm		0.3		A/W
402	λ ar	Spectral Application Range	$Se(\lambda ar) = 0.1 \times S(\lambda)max$	400		1050	nm
403	Aph()	Active Photosensor Area			0.2 x 0.1		mm ²
404	E()mx	Permissible Irradiance	application range			1000	µW/cm ²
405	fc	Upper Cut-off Frequency	sine waveform, I(D04) = 880 nA, I(DREF) = 80 nA	200			kHz
406	∆tp()	Propagation Delay Difference (Delay Skew)	square waveform, R(RSET/AGND) = $24 \text{ k}\Omega$, I(D04) = 8100 nA, I(DREF) = 100 nA			0.5	μs
407	CM()	Common Mode Referred to Reference Photocurrent I(DREF)		0.85	1	1.15	

Rev C2, Page 7/16

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
LED F	ower Contr	ol and DREF Reference Sensor					
501	Aph()	Active Photosensor Area DREF			0.2 x 0.1		mm ²
502	I(LED)	Permissible LED Output Current		0		40	mA
503	Vs(LED)	Saturation Voltage at LED	I(LED) = 40 mA			1.1	V
504	tr(LED)	LED Current Rise Time	I(LED) = 0100 %		60	1500	μs
505	R()	Link Resistance LVCC to VDD		2	5	10	kΩ
Mono	flop RC						
601	C(RC)	Permissible Capacitor at RC		0.1		1000	pF
602	R(RC)	Permissible Resistor at RC		15		1000	kΩ
603	tmf	Monoflop Time	R2 = 1 nF, C2 = 18 kΩ, tmf = 1.16 x R x C (+/- 15 %)	16	21	24	μs
604	tmf	Monoflop Time	no external RC network	11.5	21	29.5	μs
SSI In	terface						
701	f(SCLK)	Permissible Clock Rate at SCLK				2	MHz
702	tp()	Propagation Delay SCLK to SOUT			85		ns
703	tp()	Propagation Delay SERIN to SOUT	mode Sync Out		85		ns
704	tp()pwr-up	Data Availability After Power-Up			2		ms
Analo	g Test Mode	e SYNM0, SYNM1					
801	CR1()	Test Current Ratio I(SYNM1)/I(D04)	TEST = hi, MODE = lo: analog test mode active, I() = 2200 µA		1000		
802	CR2()	Test Current Ratio I(SYNM0)/I(DREF)	TEST = hi, MODE = lo: analog test mode active, I() = 2200 μA		1000		
Contr	ol Adjustme	ent RSET					
E01	V()	Reference Voltage	I(RSET) = -10020 μA	0.95	1.16	1.25	V
E02	lbias()	Permissible Bias Current		-100		-20	μA
E03	lbias()	Equivalent Internal Bias Current	Tj = 27 °C, RSET open		50		μA
E04	lsc()	Short-Circuit Current	V(RSET) = 0 V		1.3	2.6	mA
							·····

Rev C2, Page 8/16

OPERATING REQUIREMENTS: Logic

Operating Conditions: VCCA, VDD, LVCC = 4 ... 5.5 V, Tj = -40 ... +125 °C, input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD, see Fig. 1 for reference levels.

ltem	Symbol Parameter C		Conditions		Unit	
No.				Min.	Max.	
1001	t _{set}	Setup Time: SERIN stable before SCLK hi \rightarrow lo	mode No Sync	30		ns
1002	t _{hold}	Hold Time: SERIN stable after SCLK hi \rightarrow lo	mode No Sync	30		ns

OPERATING MODES AND PIN FUNCTIONS

	Parallel Output Mode	Serial Mo	Output de	Analog Test Mode	Digita Mo	Il Test ode	
	MODE = 0	MOD	E = 1	MODE = 0	MOD	E = 1	
	1231 = 0	SYNM0 = X SYNM1 = 1	SYNM0 = X SYNM1 = 0	1231 = 1	SYNM0 = X SYNM1 = 1	SYNM0 = X SYNM1 = 0	
Pin		No Sync / No Sync Binary	Sync Out / SSI Out		No Sync	Sync Out / SSI Out	
LED	LED Power Cont	rol Output (high-	side current sou	ırce)			
AGND	Analog Ground (reference for RC	and RSET atta	chments)			
GND	Digital Ground						
SOUT	Data Output D4 (MSB)	Serial Da (SSI Int	ta Output terface)	Signal Output for Switch Threshold Measurement	Serial Da (SSI In	ta Output terface)	
SERIN	Data Output D3		Serial	Data Input (SSI Inte	SI Interface)		
SCLK	Data Output D2		Clo	ck Input (SSI Interfa	ace)		
SYNM0	Data Output D1	Synchronisation Mode Input		Test Current Input DREF	Synchronisation Mode Input		
SYNM1	Data Output D0 (LSB)	Synchronisatio	Synchronisation Mode Input T		Synchronisation Mode Input		
SEEN	Gray/binary conversion (low active)	Serial Errorbit Enable Input / no function	Configuration of Phase Shift	no function	Serial Errorbit Enable Input	Configuration of Phase Shift	
RC	RC Network for N	Nonoflop					
VCCA	+4 +5.5 V Ana	log Supply Volta	ige				
VDD	+4 +5.5 V Digi	tal Supply Volta	ge				
LVCC	+4 +5.5 V LED	Driver Supply	/oltage				
NINV	Bit-wise Inversion	n Input (low activ	/e)				
MODE	Operating Mode	Selection Input					
TEST	Test Mode Enab	le Input (high ac	tive)				
RSET	LED Power Cont	rol Adjustment					
NERR	Error Output (illumination, low active)			ve)	Switch T Measu (Push-Pu	hreshold rement Ill Output)	
NDIR	Reversa	l of Rotation Dir (low active)	. Input	IDDQ Test Enable (low active)	Reversal of Ro (low a	tation Dir. Input active)	

Figure 2: Operating modes and pin functions.

DESCRIPTION OF FUNCTIONS

Illumination control

The integrated LED power control with a driver stage keeps the photocurrent of reference photosensor DREF constant. This compensates for aging, dirt and drops in efficiency of the transmitting LED with rises in temperature.

The photocurrent of reference sensor DREF and the dark current of compensation sensor DD are amplified in the receiver. The amplified currents are subtracted from one another, yielding an actual value to feed the LED power control. The current adjusted by resistor R1 at pin RSET generates the bias for the control; the voltage at pin RSET is kept constant (see Electrical Characteristics No. E01). If pin RSET remains open an internal bias current is used which is equivalent to an external resistor of ca. $24 \text{ k}\Omega$.

If there is an optical feedback loop from the LED to reference sensor DREF the power driver alters the LED current until the optical power received complies with the given setpoint. The photocurrent generated by reference sensor DREF - and thus also the level of illumination for the overall system - is kept constant.

A monitoring circuit detects when and if the LED control range is overshot or undershot and signals this by switching error output NERR to low and via the error bit during serial communication (when SEEN is high and no synchronization is selected).

Resistor R3 connected in series to the transmitting LED limits the current and governs the operating limits of the LED power control.

At the same time the amplified dark current of compensation sensor DD and the reference photocurrent of sensor DREF are added together. The resulting current, named INREF, is used to provide the switching threshold for the track comparators. This enables operation of iC-LV with an external light source instead of using power-controlled LED.

Track evaluation

The switching threshold supplied to the track comparators lies at half of INREF, ie. in the center between a full light and no light condition, and adjusts automatically to changes in illumination. This enables the device to be operated without the LED power control with a constant illumination level only. The hysteresis of the current comparators is also photocurrent tracked and increases noise immunity.

The most significant bit (MSB) can be inverted by connecting pin NDIR to ground (GND). If the pin remains open, an internal pull-up current source generates a high level. When Gray code discs are used, inverting the MSB track is tantamount to changing the direction of rotation.

Rev C2, Page 11/16

Modes Of Operation

iC-LV has various modes of operation which are preselected using pin MODE. MODE = 0 selects operation as an optoelectronic encoder IC with a parallel output; MODE = 1 (default) makes a number of serial operating modes available.

Parallel Output Mode (MODE = 0)

In parallel output mode the 5 tracks with sensor D4 (MSB) to sensor D0 (LSB or least significant bit) are output in parallel to pins SYNM1 (LSB), SYNM0, SCLK, SERIN and SOUT (MSB).

The wiring of pin NDIR determines the count direction. With NDIR connected to GND the MSB is output inverted so that the count direction can be altered when reading Gray-coded discs.

By connecting pin NINV to GND the output of all bits can be inverted. If this is not required, NINV can be left open. NDIR and NINV can be used either together or independently of one another. If both pins are connected to GND all bits - with the exception of the MSB are output inverted.

By connecting pin SEEN to GND the bits can be output in binary format following a Gray to binary code conversion. This is done after the bits have been inverted, where relevant. If pin SEEN is left unconnected the output is in Gray code.

Serial Output Mode (MODE = 1, default)

In serial output mode pin SCLK is the clock input hooked up to an SSI master supplying an intermittently active clock signal with a high level during idle time, pin SERIN is the serial data input and pin SOUT the serial data output.

Various serial operational modes and output formats can be configured using pins SYNM0 and SYNM1 (high when not wired).

SYNM(1:0)	SYNM(1:0)					
Code	Serial Op. Modes	Data Output Format				
11	No Sync (default)	5 bit Gray (option: +1 error bit)				
10	No Sync Binary	5 bit binary				
0 1	Sync Out	4 bit binary (corrected by +/- 1 bit)				
0 0	SSI Out	4 bit binary (corrected by +/- 1 bit)				

Table 1: Serial Operating Modes

In **No Sync** mode an LED control error bit (low active) can be added to the serial data by releasing it via pin

SEEN. In **No Sync Binary** mode pin SEEN has no function.

In both **No Sync** and **No Sync Binary** mode iC-LV operates without synchronization, i.e. it stores the 5 track values on the first falling edge seen at SCLK after a long idle time and then transmits the track data via pin SOUT on each of the 5 following rising edges at SCLK. At the same time pin SERIN reads in data from a prepositioned iC-LV which can then be passed on. Here, iC-LV operates as a 5-bit shift register (or 6-bit if the error bit is active during No Sync mode) whose flipflops accept input data on a falling edge and output stored data on a rising edge.

In **No Sync Binary** mode data is converted from Gray to binary before being output. In this mode of operation it is not possible to output a serial error bit; no data from SERIN is accepted on the first and second rising edge at SCLK.

If pin NDIR is connected to GND a change in count direction with Gray codes can be initiated by inverting the MSB. By connecting pin NINV to GND all track data can be output inverted. Both pins NINV and NDIR are high when not connected.

In modes **SSI out** and **Sync Out** iC-LV operates with synchronization, classing the LSB of its own code disc as a synchronization bit. The data read in from the code disc is converted into binary code and, if necessary, corrected by +1 or -1 depending on the MSB of the pre-positioned device also read in.

Each LSB has the same resolution as the MSB of the pre-positioned iC-LV, operated at a 16-fold faster speed, and is assembled so that it either trails (SEEN is high, default) or leads (SEEN is low) by up to 90°. The phase position must be configured for each individual code disc using pin SEEN (trail/lead). This phase shift applies to data converted into binary code and is not immediately visible on the code discs.

If data is read out serially and synchronized elsewhere a smaller phase shift must be adjusted. In this instance data transmission times must be taken into account.

The synchronization process ensures that synchronous with the flipping of the MSB from the pre-positioned iC-LV track data is switched forward to the next data word expected on that code disc. Once the track data has been captured on the first falling edge at SLCK, the data word is synchronized with the MSB of the predecessor during the first low and first high period on the SCLK line (the MSB is possibly subject to change within this time).

Rev C2, Page 12/16

The synchronization result is switched straight through to the output so that a synchronized MSB is available for each following gear. This allows the track data to be synchronized with MSBs on the first falling as well as on the first rising edge.

In synchronization modes iC-LV functions as a 4-bit shift register, i.e. the synchronization bit is not clocked out with the track data. Serial data is read in on a falling edge and output on a rising edge. In SSI Out mode the MSB is blanked out by a high until the first rising edge and thus output on this first rising edge, making this mode SSI compatible.

Figure 3: Synchronization

If inverted Gray codes are used on the code discs a code inversion can be initiated by connecting NINV to GND. By connecting NDIR to GND the MSB bit is output inverted to reverse the count direction of the Gray code. Here it should be noted that inverting the MSB output causes a 180° change in the phase position, i.e. a trailing 90° synchronization track becomes a leading 90° track and vice versa. This can be compensated for by a suitable setting of pin SEEN or by assembling the code disc in a suitable zero position.

Test Modes

iC-LV has two different test modes which are activated by connecting pin TEST to VDD. Pin MODE designates which test mode is activated. Connected to VDD (or not connected at all), this initiates the digital test mode; if connected to GND the analog test mode is selected. Analog Test Modes (MODE = 0)

Sensor emulation and comparator switching threshold test: To test the track evaluation and switching thresholds a test current is supplied at pin SYNM0 for reference sensor DREF and at SYNM1 for the track sensors. The current reduction ratio is 1:1000.

Alternatively, testing can be carried out by illumination as the supplied test currents are added to the photocurrents. The track to be measured at SOUT is selected via a 5-bit shift register. To this end a suitable bit stream is clocked in via SCLK (clock low active) and SERIN (level). If more than one track is selected, the comparator output signals are EXORed. The 5-bit shift register addresses track sensors D4 to D0 via bits 4 to 0. When measurement commences the shift register should be filled up with zero.

IDDQ test: This test is initiated by connecting pin NDIR (default high) to GND.

Digital Test Modes (MODE = 1, open)

Logic test: Digital test mode is largely identical to the serial operating modes. One difference is that data input at pin SERIN is first clocked through a 5-bit shift register before being clocked through the output shift register. This enables various bit sequences to be first clocked into the test register. Following an idle time on the clock line of t > tmf (see Electrical Characteristics No. 603) the test data is stored on the first falling edge on SCLK instead of the track values.

This allows various sensor input stimuli to be generated. In the synchronized operating modes the data word is synchronized with pin SERIN as in normal operating mode. Configuration of the various serial operating modes is also as in normal operating mode. No stimuli can be clocked in in **No Sync Binary** mode.

TP: So that the switching thresholds of the input interfaces (SYNM0, SYNM1, SERIN, SCLK, NDIR, NINV, SEEN) can be measured the signals are EXORed and output at pin NERR. To this end pin NERR is switched as a push-pull output.

Rev C2, Page 13/16

APPLICATION INFORMATION: SERIAL OPERATION IN CHAIN

If a stable SSI output level is required all MSBs used in the synchronization chain must be switched to the relevant outputs on the first falling edge. The iC-LV chain should also be synchronized in its entirety before the first rising edge of SCLK.

To guarantee functionality it is sufficient for synchronization to be completed by the second falling edge of SCLK; SOUT is, however, then not stable for half a clock cycle. Despite this limitation it is also possible to synchronize with MSBs which are only output on the first rising SCLK edge (e.g. from external SSI-compatible devices).

Figure 4 gives signal patterns for a cascade of three iC-LVs.

In the synchronization modes all of the information is output after just 4 rising clock edges per chained iC-LV.

In keeping with the required SSI clock frequency the time span of the internal monoflop, used to detect idle times on the clock line, can be adjusted by externally connecting pin RC to an RC network. Should pin RC remain unconnected, tmf (Electrical Characteristics No. 603) is taken as the internal time span.

Note: iC-LV stores input data received at SERIN on the falling edge of SCLK and outputs data via SOUT on the rising edge of SCLK.

Figure 4: SOUT in the various modes of operation.

Rev C2, Page 14/16

APPLICATION INFORMATION: LOW-RESOLUTION INCREMENTAL ENCODER

Since iC-LV features a separate reference photodiode for LED control, its 5 parallel tracks can be used fully independently to scan any desired code. The scanning is evaluated single-ended versus the switching threshold of 50 % provided by the LED control.

Where modern incremental encoder sensors, such as the iC-PT H-Series, require a minimum line count (e.g. 256 CPR) due to their differential phased array scanning, the iC-LV is limited to a maximum line count due to its tangential detector size of $200 \,\mu m$.

For example, assuming an optical radius of 11 mm (or 14.5 mm) for detector D3, the maximum line count is limited to approximately 163 CPR (or 227 CPR) – unless an external reticle is attached to further reduce the window.

The parallel output function must be configured as shown in Table 2.

	Configuration for Parallel Output					
Pin	Signal	Description				
LED	LED	LED Power Control Output:				
		high-side current source to LED anode, up to				
		40 mA max.; LED cathode versus 50100 Ω				
		to GND.				
GND	GND	Circuit ground				
SOUT	D4	Example: incremental B (\pm 4 mA push-pull)				
SERIN	D3	Example: incremental A				
SCLK	D2	Example: incremental Z				
SYNM0	D1	Example: unused				
SYNM1	D0	Example: unused				
SEEN	High	No Gray/binary conversion				
VDD	VDD	+5 V Supply Input				
NINV	High	No bit inversion				
MODE	Low	Parallel output mode				
TEST	Low	Test mode disabled				
RSET	Open*	LED power set internally (by approx. 24 k Ω)				
NERR	Error	Illumination error, low active.				
		Connect 10 k Ω as pull-up to VDD.				
NDIR	High	No code changes				

* Wiring an external resistor to ground is optional.

Table 2: Configuration for Parallel Output

Rev C2, Page 15/16

REVISION HISTORY

Rel.	Rel. Date [*]	Chapter	Modification	Page
A3	2007-08-30			

Rel.	Rel. Date [*]	Chapter	Modification	Page
B1	2014-07-09	PACKAGES, THERMAL DATA	optoQFN package supplemented	1-5
		ELECTRICAL CHAR.	Item 704 supplemented	7
		DESCRIPTION OF FUNCTIONS	Figure 3 corrected	12
		REVISION HISTORY	Chapter supplemented	13

Rel.	Rel. Date [*]	Chapter	Modification	Page
C1	2016-01-18	PACKAGING INFORMATION	Footnote on mandatory wiring added to pad layout	2
		ELECTRICAL CHAR.	Item 007: conditions corrected, entry for VDD < 4.5 V supplemented Item 301: max. value supplemented Item 303: min. and max. value	6ff

Rel.	Rel. Date [*]	Chapter	Modification	Page
C2	2024-01-26	TITEL cf.	Discontinued package BLCC LV4C removed	1, 3, 5, 16
		PACKAGING INFORMATION	AOI criteria added, update of oQFN package drawings and footnotes	3, 4
		THERMAL DATA	Item T03: hyperlink to customer information	5
		APPLICATION INFORMATION	Section 1 headline updated Section 2 added on incremental encoders	13, 14

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus. iC-Haus assumes no liability for any patent and/or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade

IC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. IC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev C2, Page 16/16

ORDERING INFORMATION

Туре	Package	Order Designation
iC-LV	32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm RoHS compliant	iC-LV oQFN32-5x5

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim
GERMANY

Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: https://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners