

Rev B1, Page 1/12

FEATURES

- Photoelectric amplifier with integrated photodiode
- Built-in bandpass filter with switchable centre frequency
- Differential current output with open-drain low-side drivers
- Nonlinear transfer function results in wide dynamic range for pulsed photocurrents
- Fast flash recovery time of max. 30 µs
- Recovery time below 10 µs even for excessive photocurrents within the input range
- ♦ Single 5 V supply
- Low standby current; circuit activation by input data
- ESD protection
- ◆ Function compatible to iC-NE (SEL = hi)

APPLICATIONS

- Light curtains
- Light barriers
- Electro-sensitive protective equipment (ESPE)

PACKAGES

BLOCK DIAGRAM PRIAS SN Clamp Circuit AC FOTO AMP BIAS AND POR SP INTEGRATED PHOTO DIODE OUTPUT SELI F٨ NPDR SELI SELI $\overline{}$ ELI NPDR CONTROL LOGIC INH]≥1 INTERFACE 0 ⊳ DOUT 0 0 DATA OUTPUT & 0 ⊳ С GNI

DESCRIPTION

The iC-LK is a light-grid receiver IC with integrated photo diode. Typical applications cover light curtains, light barriers and electro-sensitive protective equipment in general.

Integrated on a single silicon chip the iC-LK contains besides the photo diode a bandpass amplifier with a switchable centre frequency, a differential current output plus control logic to activate the amplifier and the output. Deactivated, the current consumption is very low and the current outputs SN and SP are switched to high impedance (zero current).

The control logic consists of a three-stage shift register in which the first two stages are triggered by the rising edge at the clock input CLK. The third flipflop is triggerred with the falling clock edge, which produces an artificial delay in order to avoid race conditions when shifting the input data via the serial output to the next device in the chain. The rising edge of a received light pulse (which produces an increase of photocurrent), causes the output current at SP to increase and at SN to decrease by an equal value. The sum of I(SP) + I(SN) is kept constant. For light curtain applications in which only one device is activated at a time, the outputs SN and SP can be attached to a two-wire bus.

After processing the serial input data at DIN, the activated amplifier and output automatically return to standby mode, when the clock input receives the second rising edge. Therefore, a chain circuitry with multiple beams can be set up with just a single data bit within a shift cycle.

The IC contains protective diodes to prevent destruction by ESD. Logic input pins feature Schmitt trigger characteristics for high noise immunity. All pins are short-circuit proof.

PACKAGING INFORMATION cQFN16 4 mm x 4 mm

PIN CONFIGURATION cQFN16 4 mm x 4 mm

PIN FUNCTIONS

No. Name Function

- 1 VDD +5 V Power Supply
- 2 GND Ground
- 3 SN Negative Differential Current Output
- 4 SP Positive Differential Current Output
- 5 n/c
- 6 n/c
- 7 n/c
- 8 n/c
- 9 DOUT Data Output
- 10 SEL Mode Select (tie to GND or VDD)
- 11 CLK Clock Input
- 12 DIN Data Input
- 13 n/c
- 14 n/c
- 15 n/c
- 16 n/c

Rev B1, Page 3/12

PACKAGE DIMENSIONS

RECOMMENDED PCB-FOOTPRINT

3.95

All dimensions given in mm. Tolerance of sensor pattern: ±0.10mm (with respect to center of backside pad).

dra_cqfn164x4-2_lk_z_pack_1, 10:1

Rev B1, Page 4/12

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD	Voltage at VDD		-0.3	6	V
G002	V()	Voltage at DIN, CLK, SN, SP, SEL		-0.3	VDD + 0.3	V
G003	Vd()	ESD Susceptibility at DIN, CLK, SEL, DOUT, SN, SP	HBM, 100 pF discharged through 1.5 k Ω		2	kV
G004	Tj	Junction Temperature		-40	150	°C
G005	Ts	Storage Temperature		-40	85	°C

THERMAL DATA

Operating Conditions: VDD = $5V \pm 10\%$

ltem	Symbol	Parameter	Conditions			Unit	
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-25		75	°C
T02	Ts	Reflow Soldering Peak Temperature	tpk < 20 s, convection reflow MSL 4 according to J-STD 20 (max, floor life			245	°C
			72 h at 30 °C and 60% RH); please refer to Customer Information #7 for details				

Rev B1, Page 5/12

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 5 V ±10%, V(SN, SP) = 3.5 VVDD, Tj = -2585 °C, unless otherwise stated							
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device	1	11		1	1	U
001	VDD	Permissible Supply Voltage Range		4.5		5.5	V
002	I(VDD)	Supply Current in VDD (Standby)	BP-amplifier and output stage disabled Tj = 27 °C		40	60	μΑ μΑ
003	I(VDD)	Supply Current in VDD	BP-amplifier and output stage enabled Tj = 27 °C		1.1	3.0	mA mA
004	VDDon	Turn-on Threshold VDD (Pow- er-on Release)				4.2	V
005	VDDoff	Undervoltage Threshold VDD (Power-down Reset)	Decreasing voltage VDD	2.5			V
006	VDDhys	Hysteresis	VDDhys = VDDon - VDDoff	180		400	mV
007	Vc()hi	Clamp Voltage hi at DIN, CLK, SEL, DOUT, SN, SP	Vc()hi = V() - VDD, I() = 1 mA	0.4		1.25	V
008	Vc()lo	Clamp Voltage lo at DIN, CLK, SEL, DOUT, SN, SP		-1.25		-0.4	V
Photo	diode	-					
101	Aph	Radiant Sensitive Area	ø 1.5 mm		1.767		mm ²
102	λar	Spectral Application Range	$S(\lambda_{ar}) = 0.25 \times S(\lambda)max$ (see Fig. 1)	400		950	nm
Band	bass Amplif	ier	· · · · · · · · · · · · · · · · · · ·				
201	E()ccw	Permissible DC Irradiance	λ_{LED} für S(λ)max			675*	μW/ cm ²
202	twhi	Permissible Photocurrent Pulse Duration	SEL = lo (see Fig. 4) SEL = hi (see Fig. 5)	0.35 1.0			μs µs
203	twlo	Permissible Photocurrent Pause Duration	SEL = lo (see Fig. 4) SEL = hi (see Fig. 5)	0.4 2.0			μs μs
204	trec	Recovery Time				0.5* 10*	μs μs
205	trec	Power Flash Recovery Time				5* 30*	μs μs
206	fl	Lower Cut-off Frequency (-3dB)	SEL = Io SEL = hi	90 30	290 80	390 110	kHz kHz
207	fh	Upper Cut-off Frequency (-3dB)	SEL = lo SEL = hi	600 100	1200 350	1800 650	kHz kHz
208	Δf	Bandwidth (-3dB)	SEL = Io SEL = hi	400 150	900 300	1400 500	kHz kHz
209	E()pk	Permissible Pulse Irradiance	I(OUT) increases or remains constant as E()pk increases			290*	mW/ cm ²
210	η _{ρκ}	Pulse Light Amplification	VDD = 5 V, P(PD)pk = 10 μ W, λ_{pk} = 700 nm, tr = tf = 0.4 us, twpk = 1.5 μ s; SEL = lo SEL = hi		125 400		A/W A/W
Outpu	it SN, SP						
301	V()out	Permissible Voltage at SN, SP		3.5		VDD	V
302	ISUM	Output Currents I(SN) + I(SP)	SEL = 0 SEL = 1	7.0 4.9	10.0 7.5	13.5 9.7	mA mA
303	IO	Relative Offset Current	IO = (I(SN) - I(SP)) / ISUM	-10		10	%
304	llk	Leakage Current I(SN) + I(SP)	Output disabled			4.0	μA
305	ldlk()	Differential Leakage Current	IdIk() = I(SN) - I(SP), twhi = 3 µs, output disabled	-0.1		0.1	μA

Rev B1, Page 6/12

ELECTRICAL CHARACTERISTICS

ltom	Symbol	Parameter	Conditions	ſ			Unit
No.	Symbol		Conditions	Min.	Тур.	Max.	Onic
306	lpn()	Differential Output Current	$\label{eq:linear} \begin{array}{l} \mbox{Ipn() = I(SN) - I(SP), E(PD)pk = 220 \mu W/cm^2;} \\ \mbox{SEL = 0} \\ \mbox{SEL = 1} \end{array}$		-0.5 -1.0		mA mA
307	lpn()	Differential Output Current	lpn() = I(SN) - I(SP), E(PD)pk = 2.2 mW/cm ² ; SEL = 0 SEL = 1		-4.0* -8.0*		mA mA
308	INoise	Differential Output Current			5.0		μA
309	tp()IDCon	Output Stage Turn-on Delay: CLK hi \rightarrow lo to 90% I(SN), I(SP)	$\begin{array}{l} \mbox{SEL = lo:} \\ \mbox{CLK hi} \rightarrow \mbox{lo to 90\% I(SN), I(SP) (see Fig. 4)} \\ \mbox{SEL = hi:} \\ \mbox{CLK lo} \rightarrow \mbox{hi to 90\% I(SN), I(SP) (see Fig. 5)} \end{array}$			3.0 3.0	μs µs
310	tp()IDCoff	Output Stage Turn-off Delay: CLK Io \rightarrow hi to 10% I(SN), I(SP)	$\begin{array}{l} \mbox{SEL = lo:} \\ \mbox{CLK lo} \rightarrow \mbox{hi to 10\% I(SN), I(SP) (see Fig. 4)} \\ \mbox{SEL = hi:} \\ \mbox{CLK lo} \rightarrow \mbox{hi to 10\% I(SN), I(SP) (see Fig. 5)} \end{array}$			3.0 3.0	μs µs
Contr	ol Inputs DI	N, CLK					
401	Vt()hi	Threshold Voltage hi	VDD = 5 V			2.0	V
402	Vt()lo	Threshold Voltage lo	VDD = 5 V	0.8			V
403	Vhys()	Input Hysteresis		450		700	mV
404	lpd()	Pull-Down Current			30		μA
Outpu	t Buffer DO	UT					
501	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(DOUT); I() = -4 mA			0.4	V
502	Vs()lo	Saturation Voltage lo	I() = 4 mA			0.4	V
503	lsc()hi	Short-circuit Current hi	V() = 0 V	-100		-25	mA
504	lsc()lo	Short-circuit Current lo	V() = VDD	25		100	mA
Switc	hing Charac	teristics					
601	tplh(CLK- DOUT)	Propagation Delay: CLK hi \rightarrow lo until DOUT lo \rightarrow hi	CL(DOUT) = 50 pF (see Fig. 3)			60	ns
602	tphl(CLK- DOUT)	Propagation Delay: CLK hi \rightarrow lo until DOUT hi \rightarrow lo	CL(DOUT) = 50 pF (see Fig. 3)			60	ns

Figure 1: Typical relative spectral sensitivity

^{*} Projected values by sample characterization

Rev B1, Page 7/12

OPERATING REQUIREMENTS: Shift Register

Operating Conditions: VDD = $5 \vee \pm 10\%$, Ta = -25...75 °C, CL() = 50 pF

Input levels $10 = 00.8$ v, $nl = 2$ vvDD, see fig. 2 and 3 for reference levels and waveform	IS

ltem	Symbol	Parameter	Conditions	Fig.			Unit
No.					Min.	Max.	
1001	tset	Setup Time: DIN stable before CLK lo \rightarrow hi		3	50		ns
1002	thold	Hold Time: DIN stable after CLK lo \rightarrow hi		3	50		ns
1003	fO	Permissible Frequency at CLK	Duty cycle 50%			10	MHz

Figure 2: Reference levels

Figure 3: Timing characteristics

OPERATING REQUIREMENTS: SEL = Io

Operating Conditions: VDD = 5 V ±10%, Ta = -25...75 °C, CL() = 50 pF

input i	mput revers 10 - 00.8 v, m - 2 vvDD, see mg. 4 for reference revers and wavelorms						
ltem	Symbol	Parameter	Conditions	Fig.			Unit
No.					Min.	Max.	
1101	ten	Activation Time: CLK lo \rightarrow hi to CLK hi \rightarrow lo		4	2		μs
1102	tinh	Output Activation Time: CLK hi \rightarrow lo until output ready to report		4	5		μs

Figure 4: Timing characteristics (analogue section), outputs SN and SP with pull-up resistors to VDD

Rev B1, Page 8/12

OPERATING REQUIREMENTS: SEL = hi

Operating Conditions: VDD = $5 V \pm 10\%$, Ta = -25...75 °C, CL() = 50 pFInput levels lo = 0...0.8 V, hi = 2 V...VDD, see fig. 5 for reference levels and waveforms

mputi							
ltem	Symbol	Parameter	Conditions	Fig.			Unit
No.					Min.	Max.	
1201	ten	Activation Time: DIN lo \rightarrow hi to CLK lo \rightarrow hi		5	10		μs
1202	tinh	Output Activation Time: CLK hi \rightarrow lo until output ready to report		5	5		μs

Figure 5: Timing characteristics (analogue section), outputs SN and SP with pull-up resistors to VDD

APPLICATIONS INFORMATION

Light curtains

The circuit in Figure 6 shows several iC-LKs connected as a light curtain, where consecutive ICs receive and evaluate clock-driven light pulses.

When discussing the function of iC-LK, it is assumed that all flip-flops have been reset, such as is the case, for example, after the supply voltage has been switched on. Signal DIN1 = high activates iC1's band-pass amplifier with the first rising edge of CLK. The current output stage of iC1 is activated when the second flip-flop also accepts the high signal with the falling CLK edge. Until this point, outputs SN and SP remain at high impedance.

With no AC fractions in the receiver photodiode, approximately equal currents are drawn in SN and SP. After

a time of $t_{inh} \geq 5\,\mu s$, the transient differential currents in the current output stage caused when the device is switched on have decayed, and iC-LK is ready to receive.

With a light pulse being detected by IC1, the currents at outputs SP and SN react as shown in Figure 7; I(SP) rises and returns to its initial value within a time constant determined by the bottom cutoff frequency of the band-pass amplifier, as long as the photodiode is constantly illuminated. When the light pulse decays, the current in SP first sinks and then reaches its standby value within the same time constant. The current in SN has a mirror-image time dependence, meaning the sum of I(SN) + I(SP) is constant.

Figure 6: Schematic of a light curtain configuration

Rev B1, Page 10/12

Figure 7: Signals for the chain configuration of Fig. 6

With DIN1 = 0, FF1 is reset at the next rising edge of CLK and the currents in the differential current output stage switched off. With the next falling edge, FF2 is reset. The pulse diagram is also valid for the subsequent components in the chain, i.e. the iCs configured as a light curtain make up a clock-driven shift register which passes on the input information.

Light curtain PCB layout

The PCB layout for light curtain receivers is not criti-

cal. As the power consumption is relatively small, only back-up capacitors with low capacitance values are required (typically $1 \mu F$ e-caps in parallel with 47...100 nF ceramic capacitors). The ceramic capacitors should be placed 7.5 cm apart and the e-caps at double this distance. The number of receivers blocked off as a group in this manner is irrelevant, as only one device is active and draws current at any one time.

Rev B1, Page 11/12

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2017-08-14	PACKAGES	Graphics updated	1
		BLOCK DIAGRAM	Graphics updated	1
		PACKAGING INFORMATION	Graphics updated	2
		PACKAGING INFORMATION	Function description of pin SEL complemented	2
		PACKAGING INFORMATION	Package dimensions graphics updated	3
		ABSOLUTE MAXIMUM RATINGS	G005: storage temperature corrected	4
		THERMAL DATA	T01: ambient temperature expanded	4
		ELECTRICAL CHARACTERISTICS	Operating conditions: junction temperature expanded	5-6
		ELECTRICAL CHARACTERISTICS	006: max. value corrected	5
		ELECTRICAL CHARACTERISTICS	102: spectral sensitivity dropped	5
		ELECTRICAL CHARACTERISTICS	207: upper cut-off frequency corrected	5
		ELECTRICAL CHARACTERISTICS	208: bandwidth corrected	5
		ELECTRICAL CHARACTERISTICS	210: pulse-light amplification conditions corrected	5
		ELECTRICAL CHARACTERISTICS	307: differential output current footnote added	6
		ELECTRICAL CHARACTERISTICS	401: threshold voltage hi min. value dropped, max. value corrected	6
		ELECTRICAL CHARACTERISTICS	402: threshold voltage low max. value dropped	6
		ELECTRICAL CHARACTERISTICS	3A01: added, selected profile only	6
		OPERATING REQUIREMENTS	Operating conditions: ambient temperature expanded	7-8

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev B1, Page 12/12

ORDERING INFORMATION

Туре	Package	Order Designation
iC-LK	clearQFN16 4 mm x 4 mm	iC-LK cQFN16-4x4

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners