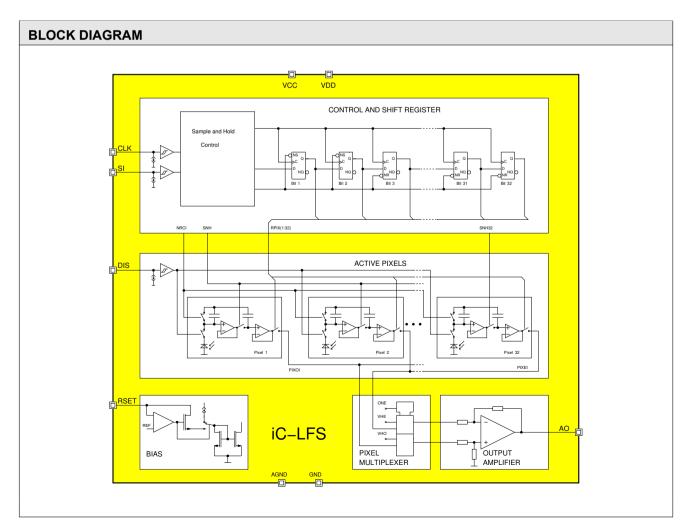


Rev A2, Page 1/10

FEATURES

- ♦ 32 active photo pixels of 56 µm at a pitch of 63.5 µm (400 DPI)
- Integrating L-V conversion followed by a sample & hold circuit
- High sensitivity and uniformity over wavelength
- ♦ High clock rates of up to 5 MHz
- Only 32 clocks required for readout
- Shutter function enables flexible integration times
- ♦ Glitch-free analogue output
- Push-pull output amplifier
- ♦ 5 V single supply operation


APPLICATIONS

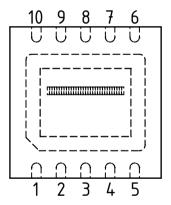
- Optical line sensors
- ♦ CCD substitute

PACKAGES

cDFN10 4 mm x 4 mm

Rev A2, Page 2/10

DESCRIPTION


iC-LFS is an integrating light-to-voltage converter with a single line of 32 pixels pitched at $63.5\,\mu m$ (center-to-center distance). Each pixel consists of a $56.4\,\mu m$ x 200 μm photodiode, an integration capacitor and a sample and hold circuit.

The integrated control logic makes operation very simple, with only a start and clock signal necessary. A third control input enables the integration period to be paused at any time (electronic shutter). With the start signal the hold mode is activated for all pixels simultaneously with the next rising clock edge; starting with pixel 1 the hold voltages are switched in sequence to the push-pull output amplifier. The second clock pulse deletes all integration capacitors and the integration period starts again in the background during the output phase. A run is complete after 32 clock pulses.

iC-LFS is suitable for high clock rates of up to 5 MHz. If this is not required the supply current can be reduced via the external bias setting.

PACKAGING INFORMATION cDFN10 4 mm x 4 mm

PIN CONFIGURATION cDFN10 4 mm x 4 mm

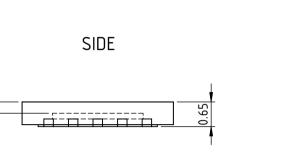
PIN FUNCTIONS No. Name Function

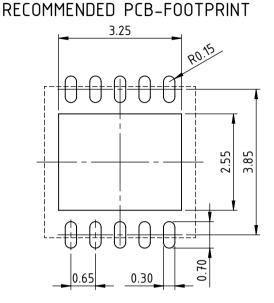
- 1 SI Start Integration Input
- 2 CLK Clock Input
- 3 AO Analogue Output
- 4 VDD +5 V Digital Supply Voltage
- 5 VCC +5 V Analogue Supply Voltage
- 6 RSET Bias Current (resistor from VCC to RSET; when connected to GND the internal bias setting is activated)
- 7 n.c.
- 8 AGND Analogue Ground
- 9 GND Digital Ground
- 10 DIS Shutter control

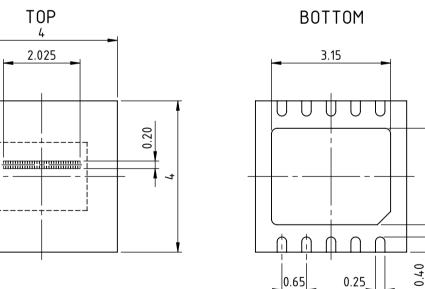
The *E-Pad* is to be connected to a Ground Plane (AGND) on the PCB.

2.55

Rev A2, Page 3/10


PACKAGE DIMENSIONS cDFN-4x4


All dimensions given in mm.


0.30

0.31

1

All dimensions given in mm. Tolerances of form and position according to JEDEC M0–229. Tolerance of sensor pattern: ±0.10mm / ±1° (with respect to center of backside pad). dra_cdfn10-4x4-2_lfs_0_pack_1, 10:1

Rev A2, Page 4/10

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

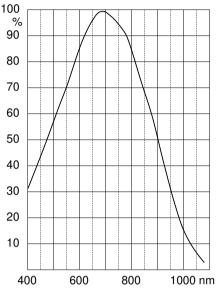
ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD	Digital Supply Voltage		-0.3	6	V
G002	VCC	Analogue Supply Voltage		-0.3	6	V
G003	V()	Voltage at SI, CLK, DIS, RSET, AO		-0.3	VCC + 0.3	V
G004	l()	Current in RSET, AO		-10	10	mA
G005	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged over $1.5 k\Omega$		4	kV
G006	Tj	Operating Junction Temperature		-40	125	°C

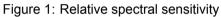
THERMAL DATA

Operating Conditions: VCC = VDD = $5V \pm 10\%$

Item	Symbol	Parameter Conditions				Unit	
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		0		70	°C

Rev A2, Page 5/10


ELECTRICAL CHARACTERISTICS


ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device					I	11
001	VDD	Digital Supply Voltage Range		4.5		5.5	V
002	VCC	Analogue Supply Voltage Range		4.5		5.5	V
003	I(VDD)		f(CLK) = 1 MHz f(CLK) = 5 MHz 70			μA	
004	I(VCC)	Supply Current in VCC			4.5	7	mA
005	Vc()hi	Clamp Voltage hi at SI, CLK, DIS, RSET	S, Vc()hi = V() - VCC; I() = 1 mA 0.3 1.		1.8	V	
006	Vc()lo	Clamp Voltage lo at SI, CLK, DIS, RSET	Vc()hi = V() — V(AGND); I() = -1 mA	-1.5		-0.3	V
007	Vc()hi	Clamp Voltage hi at AO	Vc()hi = V(AO) - VCC; I(AO) = 1 mA	0.3		1.5	V
008	Vc()lo	Clamp Voltage lo at AO, VCC, VDD, GND	Vc()lo = V() - V(AGND); l() = -1 mA	-1.5		-0.3	V
Photo	diode Array						
201	A()	Radiant Sensitive Area	200 µm x 56.40 µm per Pixel	0.01128		mm ²	
202	S(λ)max	Spectral Sensitivity	λ = 680 nm (see Fig. 1)		0.5		A/W
203	λar	Spectral Application Range	$S(\lambda_{ar}) = 0.25 \text{ x } S(\lambda) \text{max} \text{ (see Fig. 1)}$	400		980	nm
Analo	gue Output	AO	L				
301	Vs()lo	Saturation Voltage lo	I() = 1 mA			0.5	V
302	Vs()hi	Saturation Voltage hi	Vs()hi = VCC - V(), I() = -1 mA		1	V	
303	К	Sensitivity	λ = 680 nm 2.88			V/pWs	
304	V0()	Offset Voltage	integration time 1 ms, no illumination 400		800	mV	
305	ΔV0()	Offset Voltage Deviation during integration mode	$\Delta V0() = V(AO)t1 - V(AO)t2, -250$ $\Delta t = t2 - t1 = 1 \text{ ms}$		50	mV	
306	ΔV()	Signal Deviation during hold mode	Δ V0() = V(AO)t1 - V(AO)t2, Δ t = t2 - t1 = 1 ms	-150 150		mV	
307	tp(CLK-AO)	Settling Time	CI(AO) = 10 pF, CLK lo \rightarrow hi until V(AO) = 0.98 x V(VCC)			200	ns
Powe	r-On-Reset						
801	VCCon	Power-On Release by VCC				4.4	V
802	VCCoff	Power-Down Reset by VCC		1			V
803	VCChys	Hysteresis	VCChys = VCCon - VCCoff	0.4	1	2	V
Bias (Current Adju	st RSET					
901	lbias()	Permissible External Bias Cur- rent		20		100	μA
902	Vref	Reference Voltage	I(RSET) = Ibias	2.5	3	3.5	V
Input	Interface SI,	CLK, DIS					
B01	Vt()hi	Threshold Voltage hi		1.4		1.8	V
B02	Vt()lo	Threshold Voltage lo		0.9		1.2	V
B03	Vt()hys	Hysteresis	Vt()hys = Vt()hi – Vt()lo	300		800	mV
B04	I()	Pull-Down Current		10	30	50	μA
B05	fclk	Permissible Clock Frequency				5	MHz

Rev A2, Page 6/10

OPTICAL CHARACTERISTICS: Diagrams

OPERATING REQUIREMENTS: Logic

Operating Conditions: VCC = VDD = 5 V ±10%, Tj = -25...85 °C input levels lo = 0...0.45 V, hi = 2.4 V...VCC, see Fig. 2 for reference levels

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
1001	tset	Setup Time: SI stable before CLK lo \rightarrow hi	see Fig. 3	50		ns
1002	thold	Hold Time: SI stable after CLK lo \rightarrow hi	see Fig. 3	50		ns

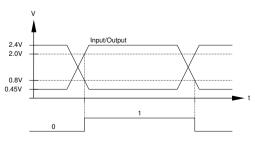


Figure 2: Reference levels

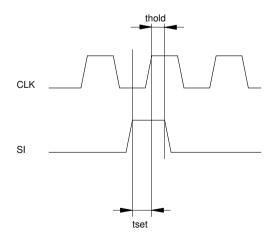


Figure 3: Timing diagram

DESCRIPTION OF FUNCTIONS

Normal operation

Following an internal power-on reset the integration and hold capacitors are discharged and the sample and hold circuit is set to sample mode. A high signal at SI and a rising edge at CLK triggers a readout cycle and with it a new integration cycle.

In this process the hold capacitors of pixels 1 to 31 are switched to hold mode immediately (SNH = 1), with

pixel 32 (SNH32 = 1) following suit one clock pulse later. This special procedure allows all pixels to be read out with just 32 clock pulses. The integration capacitors are discharged by a one clock long reset signal (NRCI = 0) which occurs between the 2^{nd} and 3^{rd} falling edge of the readout clock pulse (cf. Figure 4). After the 31 pixels have been read out these are again set to sample mode (SNH = 0), likewise for pixel 32 one clock pulse later (SNH32 = 0).

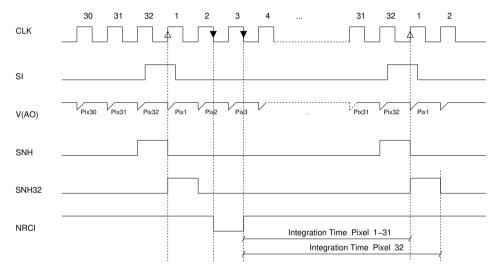


Figure 4: Readout cycle and integration sequence

If prior to the 32th clock pulse a high signal occurs at SI the present readout is halted and immediately reinitiated with pixel 1. In this instance the hold capacitors retain their old value i.e. hold mode prevails (SNH/SNH32 = 0).

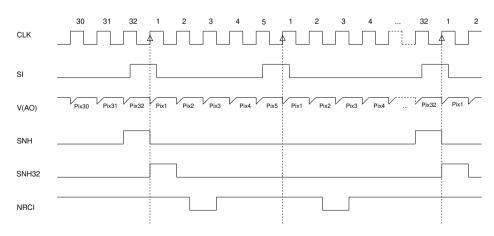


Figure 5: Restarting a readout cycle

With more than 32 clock pulses until the next SI signal, pixel 1 is output without entering hold mode; the out-

put voltage tracks the voltage of the pixel 1 integration capacitor.

Rev A2, Page 8/10

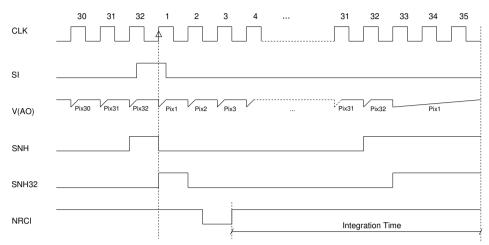


Figure 6: Clock pulse continued without giving a new integration start signal

Operation with the shutter function

Integration can be halted at any time via pin DIS, i.e. the photodiodes are disconnected from their corresponding integration capacitor when DIS is high and the current

integration capacitor voltages are maintained. If this pin is open or switched to GND the pixel photocurrents are summed up by the integration capacitors until the next successive SI signal follows.

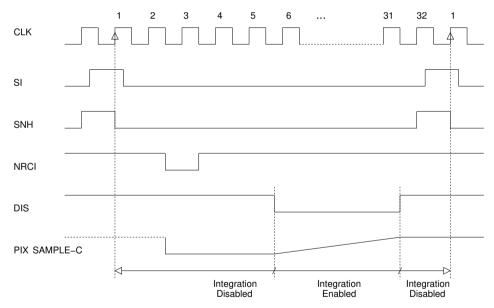


Figure 7: Defining the integration time via shutter input DIS

External bias current setting

In order to reduce the power consumption of the device an external reference current can be supplied to pin RSET which reduces the maximum readout frequency, however. To this end a resistor must be connected from VCC to RSET. If this pin is not used, it should be connected to GND.

Rev A2, Page 9/10

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A2	2015-10-20	PACKAGES	Image updated	1
		PACKAGING INFORMATION	Pin-out image updated Dimensions updated to final height	2 3
		ELECTRICAL CHARACTERISTICS	003: Value edded 004: Values added 006: Leading sign of Max. value corrected	5

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter; this letter is generated automatically and shall be sent to registered users by email

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Rev A2, Page 10/10

ORDERING INFORMATION

Туре	Package	Order Designation
iC-LFS	clearDFN10 4 mm x 4 mm	iC-LFS cDFN10

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners