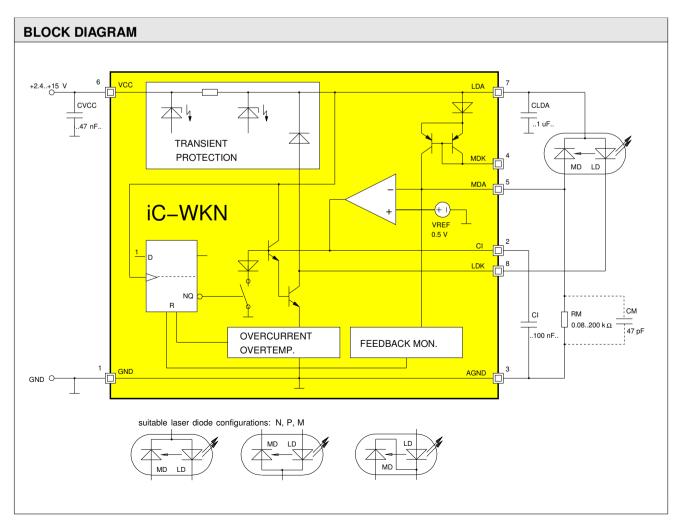


Rev C1, Page 1/12

FEATURES


- CW operation up to 300 mA from 2.4 to 15 V supply voltage
- Rapid soft start after power-on typical within 70 μs
- Optimised for N-type laser diodes
- Simple output power adjustment via an external resistor (APC)
- Power control loop accuracy better than 1.5% with changes in temperature, supply voltage and load current
- Integrated reverse polarity protection for the iC and laser diode
- Strong suppression of transients with very small external capacitors; integrated flyback path
- Permanent shut-down with excessive temperature and overcurrent (i.e. if the laser diode is damaged or the feedback current path fails)
- Two feedback inputs permit all current LD types to be used (N/P/M configurations)
- Modulation via the feedback inputs is possible
- Wide monitor current range from 2.5 µA to 6.25 mA
- Pin compatible to iC-WK and iC-WKL (SO8 package)

APPLICATIONS

♦ Laser levels

Laser diode modules

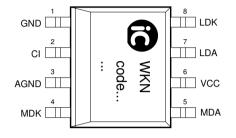
DESCRIPTION

iC-WKN is a driver for laser diodes in continuous wave operation with laser currents of up to 300 mA, which requires only four external components. The wide power supply range of up to 15 V allows for operation of blue laser diodes.

The iC includes integrated circuitry protecting against destruction by ESD, excessive temperature and overcurrent plus a soft start of the regulator to protect the laser diode when the power supply is switched on. The iC also filters the laser diode power supply for transients.

The regulator is adapted to the laser diode by an external resistor at MDA. The monitor current acts as a reference and is regulated independent of the influence of temperature and supply voltage (range: $2.5 \,\mu$ A to $6.25 \,\mu$ A). The capacitor at CI determines the control time constants and start-up time. A second monitor input, pin MDK, allows the driver to be used for other types of laser diode configuration; alternatively, it can be used as an analogue modulation input (DC to a few kHz).

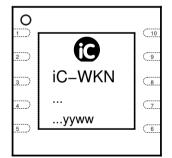
In the event of failure, such as overcurrent in the laser path due to a lack of feedback, for example, a quick power lockout is activated. The shut-down persists until power is reapplied, permitting a restart. The strain on power packs and batteries is relieved and the laser class is retained even in the event of a disturbance.


iC-WKN offers additional protection by means of spike detection at pin MDA. Should spikes or oscillation occur at pin MDA the power lockout is activated after a certain time-out.

Rev C1, Page 3/12

PACKAGING INFORMATION SO8-TP, DFN10 4 mm x 4 mm to JEDEC standard

PIN CONFIGURATION SO8-TP



PIN FUNCTIONS No. Name Function

- 1 GND Ground
- 2 CI Capacitance for Power Control
- 3 AGND Reference Ground for CI, RM
- 4 MDK Monitor Input 2 (MD Cathode, modulation)
- 5 MDA APC Setup, Monitor Input 1 (MD Anode)
- 6 VCC +2.4...+15 V Supply Voltage
- 7 LDA Laser Supply (LD Anode)
- 8 LDK Driver Output (LD Cathode)

The *Thermal Pad* is to be connected to a Ground Plane on the PCB. Do not short-circuit pins AGND and GND, for this may deteriorate the precision of the regulator and interfere with the soft-start!

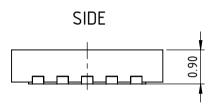
PIN CONFIGURATION DFN10

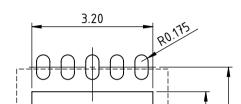
PIN FUNCTIONS No. Name Function

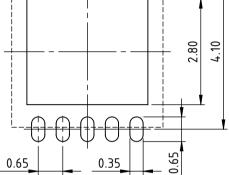
- 1 GND Ground
- 2 CI Capacitance for Power Control
- 3 AGND Reference Ground for CI, RM
 4 MDK Monitor Input 2 (MD Cathode, modulation)
- 5 n.c.
- 6 MDA APC Setup, Monitor Input 1 (MD Anode)
- 7 n.c.
- 8 VCC +2.4...+15 V Supply Voltage
- 9 LDA Laser Supply (LD Anode)
- 10 LDK Driver Output (LD Cathode)

The *Thermal Pad* is to be connected to a Ground Plane on the PCB. Do not short-circuit pins AGND and GND, for this may deteriorate the precision of the regulator and interfere with the soft-start!

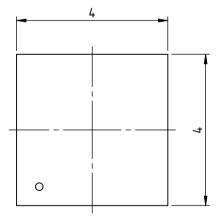
Rev C1, Page 4/12

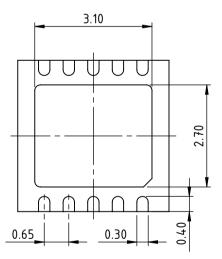

PACKAGE DIMENSIONS All dimensions given in mm. FRONT SIDE 4 7.0 1.55 0.20 0.20 ° V 0.84 RECOMMENDED PCB-FOOTPRINT TOP 4.90 3.10 3.10 3.90 2.40 5.40 2.41 9 t L 1.27 0.40 1.90 1.27 0.60 dra_so8-tp-1_pack_1, 10:1




Rev C1, Page 5/12

PACKAGE DIMENSIONS


All dimensions given in mm.



BOTTOM

dra_dfn10-1_pack_1, 10:1

RECOMMENDED PCB-FOOTPRINT

Rev C1, Page 6/12

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VCC	Voltage at VCC		-6	16	V
G002	I(VCC)	Current in VCC		-10	900	mA
G003	I(CI)	Current in CI		-10	10	mA
G004	I(LDA)	Current in LDA		-900	10	mA
G005	I(LDK)	Current in LDK		-10	900	mA
G006	I(MDA)	Current in MDA		-10	10	mA
G007	I(MDK)	Current in MDK		-10	10	mA
G008	I(AGMD)	Current in AGND		-10	10	mA
G009	I(GND)	Current in GND		-900	10	mA
G010	Vd()	ESD Susceptibility at all pins	HBM, 100 pF discharged through $1.5 k\Omega$		2	kV
G011	Tj	Operating Junction Temperature		-40	150	°C
G012	Tj	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating Conditions: VCC = 2.4...15 V

Item	Symbol	mbol Parameter Conditions					Unit
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		85	°C
T02	Rthja		soldered to PCB; no additional cooling areas therm. pad soldered to approx. 2 cm ² cooling area		30	170 50	k/W k/W

Rev C1, Page 7/12

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device				,,		
001	VCC	Permissible Supply Voltage		2.4		15	V
002	I(LDK)m	Permissible Laser Drive Current	power control range	10		300	mA
003	Idc(VCC)	Supply Current without load path	closed control loop, I(MDK) = 0, I(LDK) = 290 mA		10	20	mA
004	loff(VCC)	Supply Current on Reset			2.4	5	mA
005	Ir(VCC)	Reverse Supply Current	RM = 50 kΩ, VCC = -6 V	-10	-3		mA
006	ton()	Turn-on Delay	VCC: 0 \rightarrow 5 V to 95 % I(LDK), I(LDK) = I(LDK)m; CI = 47 nF CI = 100 nF			70 150	μs μs
007	Vc()hi	Clamp Voltage hi at VCC, LDA	I()= 10 mA, other pins open	16		24	V
008	Vc()hi	Clamp Voltage hi at LDK	V() < VCC + 1 V; I() = 10 mA, other pins open	16		24	V
009	Vc()hi	Clamp Voltage hi at MDK vs. LDA	I() = 10 mA, other pins open	8		11	V
010	Vc()hi	Clamp Voltage hi at MDA, Cl	I() = 10 mA, other pins open	1.1		4	V
011	Vc()lo	Clamp Voltage lo at VCC, LDA, MDK, MDA, CI	I() = -10 mA, other pins open	-9			V
Refer	ence and M	onitor Inputs MDA, MDK, AGND					
101	V(MDA)	Reference Voltage at MDA	closed control loop, V(LDK) > Vs(LDK)	480	500	520	mV
102	dV(MDA)	Reference Voltage Temperature Drift at MDA	see 101			120	µV/∘C
103	lerr(MDA)	Input Current in MDA	closed control loop, I(MDK) = 0, I(LDK) = 10290 mA	-100		100	nA
104	dl(MDA)	Input Current Temperature Drift in MDA	see 103	-1		1	nA/°C
105	APCerr	Control Error	RM = 10 kΩ, Tj = 080 °C RM = 10 kΩ, Tj = -40125 °C			0.3 1	% %
106	dI(RM)	Supply Voltage Suppression	V(VCC): 2.4 \rightarrow 15 V, I(LDK) = 290 mA	-1.5		1.5	%
107	Rgnd()	Resistor AGND-GND				3	Ω
108	Vf(MDK)	Voltage at MDK	$Vf() = V(LDA) - V(MDK), I(MDK) = 1 \mu A6 mA$	0.46		2	V
109	CR()	Current Ratio I(MDA) / I(MDK)	I(MDK) = 1500 μA I(MDK) = 0.53 mA I(MDK) = 36 mA	0.97 0.95 0.92		1.03 1.05 1.06	
110	TC()	Current Ratio Temperature Coefficient I(MDA) / I(MDK)	I(MDK) = 1 μA1 mA I(MDK) = 16 mA	-0.005 -0.025		0.005 0.025	%/°C %/°C
Laser	Driver LDA	, LDK					
201	Vs(LDK)	Saturation Voltage at LDK	I(LDK) = 40 mA I(LDK) = 290 mA			350 700	mV mV
202	dl(LD)	Load Balancing Error	I(LD) = 20 mA, I(LDK): 20 mA \rightarrow 290 mA	-1.5		1.5	%
203	lt(LDK)	Overcurrent Threshold in LDK	V(LDK) = 25.5 V	300		700	mA
204	lt(LDK)m	Maximum Overcurrent Threshold in LDK				1.2	A
205	toff()	Overcurrent Reset Delay	lack of feedback: $I(MD) = 0$ to $I(LDK) = It(LDK)$; CI = 47 nF CI = 100 nF			85 170	μs μs
206	Vf()	Flyback Diode Forward Voltage LDK-LDA	I(LDK) < 290 mA			1.3	V
207	Rvcc()	Transient Protection Resistor	VCC to LDA			3	Ω
208	Vt(MDA)	Shutdown Threshold at MDA	t > 1 μs	0.7		2	V

Rev C1, Page 8/12

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC = 2.4...15 V, RM = 80 Ω ...200 k Ω , Tj = -40...125 °C unless otherwise noted

Item	Symbol Parameter Conditions		Conditions				Unit
No.	_			Min.	Тур.	Max.	
Control Release Flip-Flop							
401		Set Threshold for Enable Flip-Flop	Tj = -40 °C Tj = 27 °C Tj = 125 °C	0.6 1.2 1.0 0.6		1.9 1.9 1.7 1.2	V V V V
402	Toff	Overtemperature Shutdown		140		165	°C

Rev C1, Page 9/12

SAFETY PRECAUTIONS

Laser light can damage the human eye and the eyes of animals. Do not look at any laser light directly or through any optical lens. When handling a laser diode, do not look directly at the light generated by it. Wear appropriate safety glasses to prevent light from entering the eye even by reflection.

FUNCTION DESCRIPTION

Turn-on behaviour

After switching the supply voltage on, the output stage remains disabled until the internal enabling flip-flop is set by a sufficiently high voltage at LDA.

Figure 1: Turn-on behaviour

A quick soft-start follows during phase I; the control capacitor CI is charged at an accelerated rate until the voltage at pin MDA reaches 1/3 of its nominal value.

With $V(MDA) > 1/3 V(MDA)_{nom}$ phase II starts, the controlled start-up. The transition to CW operation (phase III) is gradual and primarily determined by the values of CI and RM. CI is properly dimensioned when the voltage overshoot at MDA is at a minimum.

Turn-off behaviour

iC-WKN works without a fixed undervoltage lockout, thus the laser diode forward voltage is the prime factor determining the lowest possible supply voltage.

If the voltage drops below this value, the output driver is forcibly saturated and the laser current decreases. iC-WKN simultaneously discharges the control capacitor CI so that no excessive laser diode currents occur when the supply voltage rises again.

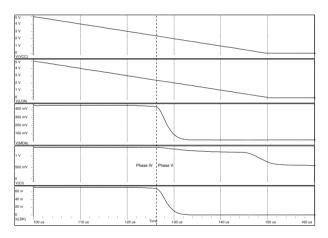


Figure 2: Turn-off behaviour

Disruptions in operation

The power control is shut down with excessive driver temperature or when the laser current reaches the overcurrent shut-down threshold, for example when the feedback is interrupted. If the monitor diode or the bias resistor RM fail, the device is shut down in less than $250 \,\mu$ s, provided that the supply voltage applied is high enough. When modulating the laser current via pin MDK, excessive voltage occurring at pin MDA also may cause a shut-down.

APPLICATION NOTES

Setting the output power

The output power is simply set by

$$RM = \frac{V(MDA)}{I(MD)}$$

with

V(MDA) = Item-No. 101 and I(MD) = monitor current of the laser diode at the desired operating point.

RM should be combined from a fixed resistor (max. output power) and a trimmer (calibration).

Layout

Pin AGND acts solely as a ground reference for the power regulator (CI and RM) and must not be short-circuited with GND externally. This could have a negative effect on the control behaviour and monitor functions.

Cooling

Laser diodes should be sufficiently cooled, particularly with the power-regulated operation of setups which use iC-WKN, for example. The power dissipation in the laser diode otherwise causes the diode to heat up and the level of efficiency to drop which the power control unit then compensates for by increasing the laser current. This in turn brings about a rise in power dissipation in the laser diode and thus also in temperature. In this instance the laser diode could be damaged (resulting in spottiness and an increase in operating current) or even destroyed before the overcurrent shutdown threshold in iC-WKN is reached.

For improved power dissipation with N-type laser diodes the common terminal (= case) can be connected to the power supply line. This eases the heat conducting assembly into a module case, connected to the power supply (e.g. battery powered modules). Alternatively the power supply may be e.g. -5 V with the module case grounded.

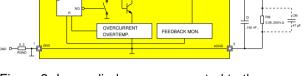


Figure 3: Laser diode case connected to the power supply

Figure 3 shows this setup with VCC and LDA short circuited. The function of the now by-passed transient protection resistor is replaced by an external resistor (typ. 3Ω) in the GND line.

Current limiting

iC-WKN

Figure 4 shows a relatively simple way to add a selectable current limiter to iC-WKN. $V_{BE}(Q_{lim})/R_{lim}$ sets the maximum current through the laser diode..

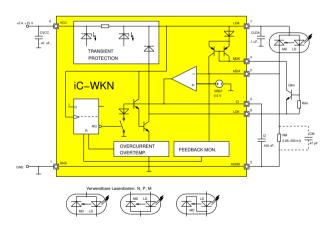


Figure 4: iC-WKN with selectable current limiter

Miscellaneous

Further application notes on the iC-WK family (iC-WK, iC-WKL, iC-WKN) and the data sheet of the demo board are available as separate documents.

Rev C1, Page 10/12

Rev C1, Page 11/12

REVISION HISTORY

Rel	Rel.Date	Chapter	Modification	Page
C1	24.09.14	PACKAGING INFORMATION	Package Dimensions added	4, 5
C1		ELECTRICAL CHARACTERISTICS	207: Changed to 3Ω	7
C1		APPLICATION NOTES	Additional Application Notes added	10

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email.

ic-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

Rev C1, Page 12/12

ORDERING INFORMATION

Туре	Package	Order Designation
iC-WKN iC-WKN	SO8 with thermal pad DFN10 4 mm x 4 mm	iC-WKN SO8-TP iC-WKN DFN10
Evaluation Board		iC-WKN EVAL WK4D

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: http://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners