iC213 PROGRAMMABLE OSCILLATOR MODULE

Rev A2, Page 1/12

FEATURES

- ♦ 40 kHz to 1.4 GHz with 50% duty cycle
- LVDS und TTL outputs
- ♦ Compatible with HG1D, HG2D, NZN1D, NZP1D, iC245, ...

APPLICATIONS

 Pulse generator for laser diode drivers

iC213 PROGRAMMABLE OSCILLATOR MODULE

DESCRIPTION

The core of the iC213 module is a via l^2C programmable oscillator device. To program the frequency, 8 internal 8 bit registers have to be set accordingly. On the iC213 module an ATMega128 micro-controller performs this task.

A selection of 4096 preset frequencies between 39.3 kHz and 1 GHz can be set by means of three HEX switches. A list of these frequencies to choose from is given in the chapter *Selectable Frequencies*.

Using the I^2C interface to select a frequency, either one of the 4096 preset frequencies or an arbi-

trary frequency from 39.0625 kHz to 945 MHz, 970 to 1134 MHz and 1213 to 1417.5 MHz can be programmed.

Switch SW4 enables/disables the iC213 module, as does the NE_OSC pin.

This module is pin compatible to the ns-pulse generator module iC149.

The iC213 module can be used as input for the pulse-width modifier module iC245.

Rev A2, Page 3/12

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions		_		Unit
No.				Min.	Тур.	Max.	
Gener	ral	1					r
001	Vs	Supply Voltage	referenced to GND	4.5		5.5	V
002	ls	Current Consumption			460		mA
003	Is _{NEN}	Current Consumption	Oscillator disabled		420		mA
I ² C In	terface						
101	V _{IH}	Input Low Level		-0.5		0.3 * Vs	V
102	V _{IL}	Input High Level		0.7 * Vs		Vs + 0.5	V
103	V _{OL}	Output LowLevel	3 mA load current	0		0.4	V
104	tr	Rise Time at SDA, SCL				300	ns
105	t _{OF}	Fall Time at Output	$V_{IH_{min}} \Rightarrow V_{IL_{max}}$			250	ns
106	t _{SP}	Spikes suppress by input filter		0		50	ns
107	f _{Max}	Maximum Bus Frequency				400	kHz
LVTTL	-/LVCMOS	Outputs					
201	V _{TTL_L}	Low Level			0.1	0.4	V
202	V _{TTL_H}	High Level		2.7	3.2		V
203	t _{tr} , t _{tf}	Rise/Fall time	10 % until 90 %		350	800	ps
204	f _{max}	Maximum Frequency		250	300		MHz
LVDS	Outputs						
301	V _{OUT}	Output Swing	100 Ω temination	250	325		mV
302	V _{DIF_OUT}	Differential Output Swing	100 Ω temination	500	650		mV
303	V _{OCM}	Common Mode Output Voltage		1.125		1.275	V
304	t _r , t _f	Rise/Fall time	10 % until 90 %, full swing		170	270	ps
Trigge	er Output						
401	V _{TOL}	Low Level	50 Ω temination	80	200		mV
402	V _{TOH}	High Level	50 Ω temination		580	890	mV
403	t _{tr} , t _{tf}	Rise/Fall time	10 % until 90 %		250	280	ps
Progr	ammable Fr	equency Range					
501	f _{OUT}	Frequency	LVDS Outputs, HEX Switch	39.3 970k		944k 1000k	kHz kHz
502	f _{OUT} ,	Frequency	LVDS Outputs, I ² C programming	39.0625 970k 1213k		945k 1134k 1417.5k	kHz kHz kHz

PIN CONFIGURATION

Figure 1: The populated PCB

Figure 2: Pin configuration J1 (PCB bottom view)

J1	16 pole pin header for power supply and
	signal outputs

J2 RJ45 connector for output signals with LVDS or TTL/CMOS levels

J3 reserved

- J4 TRIGGER: SMA connector for trigger output, Rout = 50Ω
- JP1 Jumper at position 1-2 selects TTL/CMOS signals for J2
- JP2 Connects RJ45 Shield (J2) to GND
- JP3/JP4 Selects I²C Address, see section Programming via I²C
- SW1 Frequency coding switch low (Bit 0-3)
- SW2 Frequency Coding switch mid (Bit 4-7)
- SW3 Frequency Coding switch high (Bit 8-11)
- SW4 Oscillator ON/OFF
- TP1 LVDS signal at J2 (must be terminated with 100Ω for measurement purpose)
- TP2 LVDS signal at J1 (must be terminated with 100Ω for measurement purpose)
- TP3 LVDS clock signal at U1 digital oscillator output (for reference only)
- TP4 TTL/CMOS signal at J1
- P1 Trimmer for fine tuning the frequency
- D1 Oscillator ON/OFF indication
- GND GND
- V5D 5 V Power supply
- VD3_3 3.3 V

Table 1: Connectors on the PCB

LVDS AND TTL OUTPUTS

The clock signal is supplied to J1 both as LVDS and TTL signals. Additionally it is supplied to J2, the RJ45 plug, also both as LVDS and TTL signals. The TTL signal at J2 can be enabled/disabled by means of jumper JP1.

The output of the core oscillator is LVDS level. To be able to set lower frequencies than the lowest oscillator frequency of 10 MHz two downstream LVDS frequency dividers are used. These are cascaded in a way so that the division factor can be set in three steps between 1, 64 and 256. Thus frequencies down to 39.0625 kHz can be programmed.

These dividers are set automatically when choosing from the predefines frequencies. Though they can also be programmed manually via the I^2C interface.

An additional fan-out buffer distributes the LVDS signal to the four outputs (2 x TTL, 2 x LVDS) of the module. The TTL signals are generated by two LDVS/TTL converters. Since the operating frequency of these converters is limited to 300 MHz, the TTL outputs should only be used up to this frequency. For higher frequencies only the LVDS outputs should be used. The LVDS outputs must be differentially terminated with 100 to 110Ω .

Figure 3: Channel 2 (red) TTL output, Channel 3 (green) LVDS Output

ENABLE INPUT

Via the input EN_OSC the output of the module can be enabled/disabled. This input is high active and features an internal pull-up resistor. That means, connecting this input to GND (low level) disables the outputs. With an unconnected input EN_OSC the outputs are enabled. Switch SW4 performs the same function.

TRIGGER

An SMA connector on the modules serves as a trigger source e.g. for an oscilloscope. This connector supplies the programmed clock signal. The internal resistance of the trigger source is 50 Ω . Hence the connected cable should have a characteristic wave impedance of 50 Ω and be terminated also with a 50 Ω resistor. The signal amplitude will then be about 200 to 600 mV.

Figure 4: Channel 1 (blue) trigger signal with 100 MHz

SETTING THE FREQUENCY

Using the I^2C interface arbitrary output frequencies in the range 39.0625 kHz to 1417.5 MHz can be programmed. The intrinsic oscillator allows frequencies in the ranges of 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417.5 MHz to be programmed.

To this end the oscillator utilises a so called DCO (*Digitally Controlled Oscillator*), consisting of a reference clock oscillator with f_{XTAL} and a multiplier R_{FREQ} following a high-speed divider HS_DIV as well as the output divider N1:

$$f_{out} = \frac{f_{XTAL} * RFREQ}{HS_DIV * N1}$$

Using a PLL the reference clock in the DCO is multiplied with RFREQ. The operating frequency of this PLL is between 4.85 and 5.67 GHz. The thus generated RF signal is divided by means of the high-speed divider HS_DIV and further reduced by divider N1 to the required output frequency.

RFREQ

RFREQ it the multiplier for the *Digitally Controlled Oscillator*. Multiplying it with the referential clock f_{XTAL} = 114.3363533 MHz yields the output frequency of the DCO. Hence the multiplier RFREQ is determined as follws:

$$f_{DCO} = f_{XTAL} * RFREQ$$

 $\Rightarrow RFREQ = \frac{f_{DCO}}{f_{XTAL}}$

RFREQ is a 38 bit number with the upper 10 Bit representing the digits to the left of the decimal point and the lower 28 bit the digits to the right of the decimal point.

Example: RFREQ = 02E0B04CE0

Hex	02E	0B04CE0							
Binary	00 0010 1110	0000 1011 0000 0100 1100 1110 0000							
	46	: 2 ²⁸							
	40	0,043042064							
Decimal	46,043042064								

Table 2: RFREQ Conversion

HS_DIV

The high-speed divider is coded as a 3 bit digit as shown in Table 3.

Ν	1
T	h

The output divider N1 only allows even values between 1 and 128 to be set, except for the division factor 1. N1 calculates as:

Value in the register N1 = Divider N1 - 1

So to set a division factor of e.g. 10, 0001001b (decimal 9) must be programmed.

N1[6:0]	Divider				
0000000	1				
0010011	36				
1111111	128				

Table 4: Values for output divider N1

Example

A frequency of 100 MHz at the output of the oscillator is

HS_	_DIV[2:0]	Divider
0	0	0	4
0	0	1	5
0	1	0	6
0	1	1	7
1	0	0	not used
1	0	1	9
1	1	0	not used
1	1	1	11

Table 3: Values for HS_DIV

Rev A2, Page 7/12

to be programmed. Therefore the required values for HS DIV and N1 have to be chosen. The frequency of the DCO f_{DCO} must be between 4.85 and 5.67 GHz.

For a low power consumption HS DIV should be selected as high as possible and N1 as low as possible. Furthermore the DCO frequency f_{DCO} should also be as low as possible.

For this examples the following values have been chosen as:

$$f_{out} = \frac{f_{XTAL} * RFREQ}{HS_DIV * N1} = \frac{f_{DCO}}{HS_DIV * N1}$$

PROGRAMMING

There are two ways to set the frequency of the iC213 module. Three HEX switches with 4 bit each (= 12 bit) allow the selection from a list of pre-defined frequencies. Alternatively an I²C interface allows this module to be programmed directly. Plus the trimmer P1 allows a fine-tuning of the VCO frequency.

Selectable frequencies

Figure 5 gives the list of frequencies that can be selected via the three HEX switches. The frequencies rise exponential. Thus an even distribution across the whole frequency range from 39.3 kHz up to 1 GHz is granted.

 $f_{DCO} = f_{out} * HS_DIV * N1 = 100 MHz * 9 * 6 = 5400 MHz$

Thus f_{DCO} is within the valid range between 4.85 and 5.67 GHz. RFREQ multiplied by the referency fre-

 $RFREQ = \frac{5400 \, MHz}{f_{XTAL}} = \frac{5400 \, MHz}{114,3363533 \, MHz}$

Reference frequency (= 114.3363533 MHz)

quency f_{XTAL} has to yield 5400 MHz and hence:

= 47.229073204

Output frequency of DCO

Output frequency

HS DIV High-speed divider Output divider N1

RFREQ Multiplier

fout

N1

fXTAL f_{DCO}

Divider	25	56	2	56	6	4	:	1	1		
HEX-Sw.	0x000 -	- 0x1FB	0x1FB ·	- 0x57F	0x57F -	- 0x903	0x903 -	- 0xC87	0xC87 -	- OxFFF	
Decade	40.5 kHz	- 100 kHz	100 kHz	- 1 MHz	1 MHz -	10 MHz	10 MHz -	100 MHz	100 MHz	- 1 GHz	
	HEX	f / kHz	HEX	f / kHz	HEX	f / MHz	HEX	f / MHz	HEX	f / MHz	
	<hr/>		0x1FB	100,0	0x57F	1,000	0x903	10,00	0xC87	100,0	
	\land	\land	0x1FC	100,5	0x580	1,005	0x904	10,05	0xC88	100,5	
	\land	\land	0x1FD	101,0	0x581	1,010	0x905	10,10	0xC89	101,0	
			:		:		:		:		
	\wedge	\land	•		•			•	•		
			0x2C1	199,0	0x645	1,990	0x9C9	19,90	0xD4D	199,0	
	/		0x2C2	199,5	0x646	1,995	0x9CA	19,95	0xD4E	199,5	
	<u> </u>		0x2C3	200,0	0x647	2,000	0x9CB	20,00	0xD4F	200,0	
	0x000	39,3	0x2C4	201,0	0x648	2,010	0x9CC	20,10	0xD50	201,0	
	0x001	39,4	0x2C5	202,0	0x649	2,020	0x9CD	20,20	0xD51	202,0	
		-		:	:	:					
	0x195	79,8	0x519	798,0	0x89D	7,980	0xC21	79,80	0xFA5	798,0	
	0x196	79,9	0x51A	799,0	0x89E	7,990	0xC22	79,90	0xFA6	799,0	
	0x197	80,0	0x51B	800,0	0x89F	8,000	0xC23	80,00	0xFA7	800,0	
	0x198	80,1	0x51C	802,0	0x8A0	8,020	0xC24	80,20	0xFA8	802,0	
	0x199	80,2	0x51D	804,0	0x8A1	8,040	0xC25	80,40	0xFA9	804,0	
	:	:	:	:	:	:	:	:	:	:	
	. 1 = 0					•			•	•	
	Ox1F9	99,7	0x57D	996,0	0x901	9,960	0x085	99,60	OXFEE	942,0	
	Ow1FR	100 0	0x57E	1000 0	0x902	9,980	0x086	100 00	OWFER	944,0	
	UXIFB	100,0	UX57E	1000,0	0×903	10,000	UXC8/	100,00	OXFF0	970,0	
									OXFF1	972,0	
									· UXFF2		
									:	:	
									OxFFD	996,0	
									Oxffe	998,0	
									Oxfff	1000,0	

Figure 5: Frequency list

The three HEX switches equal 4 bit each = 1 nibble and are designated as high (high nibble), mid (middle nibble) and low (low nibble). If for example

high = 6, mid = 4, low = 7 are chosen, this relates to 0x647 and hence a frequency of 2 MHz.

Rev A2, Page 8/12

Programming via I²C

Programming the module via the I²C interface there are two ways to set a frequency.

First one can also select one of the pre-defined frequencies from Table 5. Second an arbitrary frequency between 39.0625 kHz and 1417.5 MHz can be programmed. In both cases the relevant registers have to

be set accordingly via the I²C interface.

The I^2C bus address is set between 40 (0x28) and 43 (0x2B) by means of soldering bridges JP3 and JP4. The maximum bus frequency is 400 kHz.

JP3	JP4	Addr
open	open	40 (0x28)
open	close	41 (0x29)
close	open	42 (0x2A)
close	close	43 (0x2B)

Table 5: I²C bus address

	Write Register															
S	IC213 - Address	0	Α	register address	Α	da	ta byte	Α	data byte	Α	Ρ					
	Optional 2nd data byte and acknowledge illustrated															
	Read Register															
S	IC213 - Address	0	Α	register address	Α	S	IC21	3 - /	Address	1	Α	data byte	Α	data byte	Ν	Ρ
	Optional data byte and acknowledge before the last data byte and not acknowledge illustrated Last data byte and not acknowledge illustrated															
	Master to Slave Slave to Master															
	A - acknowledge N - not acknowledge (if write error occured or after last data byte read) S - START condition P - STOP condition															

Figure 6: I²C communication

Write

There are 25 registers for programming the frequency. The programming procedure is like with I²C EEPROMs. A transmission starts with sending the START signal and the module address. The first byte contains the register address which is to be written. Following the data byte for this register. An internal address counter allows multiple consecutive bytes to be written. Sending the STOP signal ends the transmission. nal and module address, first the address of the register to be read is transmitted. Following this a REPEATED START signal is sent with the R/nW-Bit in the address byte set. Now the register can be read. The internal address counter again allows consecutive registers to be read. The master acknowledges the last byte to be read with *Not Acknowledge* and sends the STOP signal.

Read

For reading the registers, following the I²C START sig-

Register description

Reg	ister / Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
0 0x00 VER_NR[7:0]								Software version		
1	0x01			1	VER_N	R[15:8				
2	0x02	0	0	0		VE	Version day			
3	0x03	0	0	0	0		VER_	M[3:0]		Version month
4	0x04	VER_Y[7:0]							Version year	
5	0x05	VER_Y[15:8]						version year		

Table 6: Register map of the μ C (version number)

Rev A2, Page 9/12

Firmware version

The first six registers of the iC213 module are read-only. These registers hold the version number and respective data of the μ C firmware.

VER_NR[15:0] - Software version

Contains the 16 bit version number of the μ C software.

VER_D[4:0] - Version date day

Contains a 5 bit value giving the day of version date.

VER_M[3:0] - Version date month

Contains a 4 bit value giving the month of the version date.

VER_Y[15:0] - Version date year

Contains a 16 bit value giving the year of the version date.

Command register

Via the command registers commands are sent to the iC213 module. Currently only a single command is implemented.

Register / Addr.		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
13	0x0D	0	0	0	0	0	0	0	S2H	

Table 7: Command register

S2H - Set to HEX

Setting this bit to *1* takes the current setting of the HEX switches and sets the modules to the corresponding frequency.

HEX switch settings

Register 14 and 15 are read-only. They contain the 12 bit HEX switch setting. The value read from this register does not necessarily represent the frequency number currently set.

Reg	ister / Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
14	0x0E HEX_ST[7:0]								HEX switch setting	
15	0x0F	0 0 0 0 HEX_ST[11:8]					TIEX Switch Setting			

Table 8: Register for HEX switch setting

Frequency number

Registers 16 and 17 hold the 12 bit value of the set frequency number from Figure 5. Using this register the frequency number can be set or the current frequency

number can be read. If the programmed frequency number is not one of the listed ones, 0xFFFF is returned.

Register / Addr.		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
16	0x10	FREQ_NR[7:0]								
17	0x11	0	0	0	0	FREQ_NR[11:8]				Trequency number

Table 9: Register for 12 bit frequency number

Oscillator calibration bytes

The six registers of the Oscillator Calibration Bytes represent the settings of the intrinsic oscillator. Setting these registers via I²C directly manipulates the settings of the oscillator device. The output frequency of the

module however also depends on the settings of the divider (register 24).

The following table shows the register assembly:

Rev A2, Page 10/12

Register / Addr.		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
18	0x12	HS_DIV[2:0]								
19	0x13	N1[N1[1:0] RFREQ[37:32]							
20	0x14	RFREQ[31:24]								
21	0x15		RFREQ[23:16]							
22	0x16	RFREQ[15:8]								
23	0x17	RFREQ[7:0]								

Table 10: Oscillator Calibration Bytes register

HS_DIV[2:0] - High-speed divider

Using this 3 bit the first frequency divider following the DCO is set.

N1[6:0] - Output divider

These 7 bit set the output divider. N1 must hold only even values between 1 and 128, e.g. 2, 4, 6, etc. up to 128. The only exception is the division factor of 1. Invalid values are rounded up to the next even value.

RFREQ[37:0] - Reference Frequency

RFREQ contains the multiplier for the DCO. The upper 10 bit contain the digits to the left of the decimal point and the lower 28 bit the digits to the right of the decimal point.

ET[1:0] - External divider

ET[1:0]	Divider
00 / 01	1
10	64
11	256

Table 11: Truth table for the external divider

External divider

Using this register the external clock divider of the iC213 module is set. The divider can be set to 1/1, 1/64 or 1/256.

Register / Addr.		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
24	0x18	0	0	0	0	0	0	ET[1:0]		external divider

Table 12: Register for the external divider

Rev A2, Page 11/12

REVISION HISTORY

Rel.	Rel. Date [*]	Chapter	Modification	Page
A1	2012-03-19		Initial release	all
Rel.	Rel. Date [*]	Chapter	Modification	Page
A2	2023-12-12		Re-ordered and partially re-named chapters.	1–4
		BOARD	New product image	1
		PIN CONFIGURATION	Added populated PCB drawing, added connectors on the PCB Table, moved J1 configu- ration Table into Pin configuration J1 Figure.	4
		PROGRAMMING	Fixed content of Frequency list around the 2 \ast 10 ⁿ MHz values. Fixed example HEX switches values. Added I ² C bus address table. Improved I ² C communication Figure.	7, 8
		all	Fixed typos and improved readability.	all

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus. iC-Haus assumes no liability for any patent and/or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade

IC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. IC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev A2, Page 12/12

ORDERING INFORMATION

Туре

_ _ . . .

iC213

iC213

Order Designation

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: https://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners