HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 1/85

FEATURES

- ♦ Reflective, compact, high-resolution, absolute encoder iCs
- ♦ Series of 3 basic encoder iCs for matched code discs (∅ 9 mm, 26 mm) and linear scales (max. 6.71 m)
- ♦ Unique FlexCode® circuitry for arbitrary code disc diameters
- ♦ Monolithic HD Phased Array with excellent signal matching
- ◆ EncoderBlue®: System-on-chip design with embedded blue LED for excellent signal quality
- ♦ LED power control
- ♦ Absolute singleturn resolution of 22 bit (Ø 26 mm) with on-chip interpolation
- ♦ Automatic adjustment features on command
- ♦ Calibration and configuration storage via external I2C EEPROM
- ♦ Digital BiSS, SSI, and SPI interfaces with CMOS I/O
- ♦ Operational and temperature monitoring with alarm messaging
- ♦ Operation at 4.5 V to 5.5 V within -40 °C to 125 °C
- ♦ 2.5 V, 3.3 V, and 5.0 V compatible I/O ports
- ♦ Unique FlexCount® interpolation for arbitrary ABZ resolution
- ♦ UVW commutation signals for motors with 1 to 32 pole pairs
- ♦ Configurable analog outputs
- ♦ Absolute Data Interface (ADI) to multiturn sensors
- ♦ Wide assembly tolerances ensure easy installation

APPLICATIONS

- Low-height, absolute optical position encoders
- ♦ Factory automation and robotics
- ♦ Servo motors
- ♦ Linear actuators

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 2/85

DESCRIPTION

The iC-PZ Series represents advanced optical-reflective absolute encoder iCs featuring integrated photosensors. Utilizing an *HD Phased Array* and an *Embedded Blue LED Chip*, an outstanding signal fidelity is obtained at relaxed alignment tolerances.

Typical applications are high-resolution rotary and linear position encoders.

Blue-enhanced photosensors are adapted to the short wavelength of the embedded blue LED, improving the signal contrast for an outstanding jitter performance. The optical crosstalk is minimized due to the unique assembly technology of the emitter and sensor.

The internally powered blue LED ensures constant illumination without any external wiring. A sine square or sum control mode is selectable for LED power control.

Automatic adjustment features provide fast and reliable signal calibration on command.

Unique features like FlexCount[®] and FlexCode[®] guarantee highest flexibility regarding encoder resolution and diameter.

The configuration and calibration data is stored in an external I2C EEPROM. Additional user data can be stored and accessed via iC-PZ.

The analog circuitry and the integrated blue LED are operated at 5 V \pm 10 %. For the digital supply includ-

ing the I/O ports, a voltage range of 2.25 V to 5.5 V is possible. Both supply inputs can be shorted and operated at 5 V.

BiSS, SSI, and SPI are supported as digital interfaces to ensure easy system-integration.

General notice on materials under excessive conditions

Epoxy resins (such as solder resists, IC package and injection molding materials, as well as adhesives) may show discoloration, yellowing, and surface changes in general when exposed long-term to high temperatures, humidity, irradiation, or due to thermal treatments for soldering and other manufacturing processes.

Equally, standard molding materials used for IC packages can show visible changes induced by irradiation, among others when exposed to light of shorter wavelengths, blue light for instance. Such surface effects caused by visible or IR LED light are rated to be of cosmetic nature, without influence to the chip's function, its specifications and reliability.

Note that any other material used in the system (e.g. varnish, glue, code disc) should also be verified for irradiation effects.

General notice on application-specific programming

Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

The chip's performance in application is impacted by system conditions like the quality of the optical target, the illumination, temperature and mechanical stress, sensor alignment and initial calibration.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 3/85

CONTENTS

PACKAGING INFORMATION	5	SINGLETURN POSITION EVALUATION	31
SENSOR LAYOUT	5	ANALOG OUTPUT	32
PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)	6	Signal Routing	
PACKAGE DIMENSIONS	7	Output Driver	
ABSOLUTE MAXIMUM RATINGS	8	ABZ GENERATOR	33
ABSOLUTE MAXIMUM NATINGS	0	AB Periods	33
THERMAL DATA	8	AB Direction	33 34
ELECTRICAL CHARACTERISTICS	9	Z Polarity	34
ELECTRICAL CHARACTERISTICS: Diagrams	12	Hysteresis	34
		Minimum Transition Distance	35
OPERATING REQUIREMENTS	13	ABZ Offset	36
Supply Voltages	13	ABZ Preset	36
BiSS Slave	14	Startup	37
SSI Slave	15	UVW GENERATOR	38
SPI Slave	16	Pole Pairs, Direction and Polarity	38
Absolute Data Interface (ADI)	17	UVW Offset	39
SIGNAL DEFINITIONS	18	UVW Preset	39
CIGNAL BEI IMPIONO		Startup	40
LINEAR REGULATOR	19		
		POSITION SETTINGS	41
EEPROM SELECTION	19	Position Data Length	41
POWER-ON RESET	19	Position Offset	41
TOWER ON REGET		Position Preset	41
STARTUP	19	BISS SLAVE	43
INTERFACE PORTS	20	Single Cycle Data	43
		Sign-of-Life Counter	44
CIRCUIT DESIGN PROPOSALS	21	Cyclic Redundancy Check	44
		Fixed & Adaptive Timeout	44
MEMORY ORGANIZATION	22	BiSS protocol commands	44
EEPROM Access	22	SSI SLAVE	46
Bank Selection	22		
Register Protection Level (RPL)	22	SPI SLAVE	48
REGISTER MAP	23	Read Registers	48
		Write Registers	48
INTERFACE PORTS CONFIGURATION	29	Read Position	49
Slew Rate I/O-Pads	29	Write Command	50
Port Disabling	29	Read Diagnosis	50 51
VDDIO Monitoring	29	Request Data From I2C Slave	51 51
LED BOWED CONTROL	00	Get Transaction Info	51
LED POWER CONTROL	30	Multi-Slave Configurations with iC-PZ	52
INTERPOLATOR	31	Activate Slave In Chain	52

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 4/85

COMMANDS	53	FLEXCODE [®]	69
ABSOLUTE DATA INTERFACE (ADI) Interface Enable Single- and Multi-Slave Operation Synchronization Error and Warning Bits Interface Settings Startup Diagnosis	55 55 55 56 56 57 58 58	ADJUSTMENT ANALOG Offset	71 72 73 74
Communication with 8-bit devices	60 60 60 62 62 62	ADJUSTMENT DIGITAL Adjustment Digital, Static	76
TEMPERATURE SENSOR	63	SAFETY ADVICE	78
DIAGNOSIS Errors & Warnings	64 66 66	HANDLING ADVICE DEVICE OVERVIEW	78 79
SYSTEM CONFIGURATION Revision & Identification	67	DESIGN REVIEW: Notes On Chip Functions REVISION HISTORY	80

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 5/85

PACKAGING INFORMATION

SENSOR LAYOUT

AOI CRITERIA

<Die Mark> <Section> <Area Class>¹
iC-PZxxxx 1 A16
2 A25

¹ Inspection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 6/85

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

PIN FUNCTIONS

	Name	Function
1 8	CFG(0) PORTA(3)	Port Configuration Input Interface Port A
10 11 12 13 14	PORTA(1) PORTA(0) C1V8 GNDIO ³ VDDIO PORTB(2)	Interface Port A Interface Port A Interface Port A Core Voltage Buffer Capacitance (see Elec. Char. R01) Digital I/O Ground +2.25 V+5.5 V Digital I/O Supply Voltage Input Interface Port B Interface Port B
17 18 19 20 21 22 23	PORTB(0) ACL ADA GPIO(1) GPIO(0) NRES PORTC(3)	Interface Port B Absolute Data Interface, clock line Absolute Data Interface, data line General Purpose I/O General Purpose I/O Reset Input Interface Port C Interface Port C
26 27 28 29 30		Interface Port C Interface Port C I2C Master, clock line I2C Master, data line Analog Ground +4.5 V+5.5 V Analog Supply Voltage Input Port Configuration Input Port Configuration Input
27	n.c. ¹	
	BP^2	Backside Pad / Exposed Pad

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

Pin numbers marked with n.c. are not connected.
 The backside pad has to be connected by a single link to GNDA. A current flow across the pad is not permissible.

³ GNDA and GNDIO must be at the same potential but should be connected with separate lines from a star point on the PCB.

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 7/85

PACKAGE DIMENSIONS

RECOMMENDED PCB-FOOPRINT 4.90 3.60 SIDE +0.10 0 0.90 3.60 4.90 0.50 0.30 TOP **BOTTOM** 5 3.60 0.65 0.65 0 2.57 3.60 2.57 $0 \oplus 0$ 0.40 0.15 1.35 1.05 0.50 0.25

All dimensions given in mm. General Tolerances of form and position according to JEDEC M0-220. Positional tolerance of sensor pattern: $\pm70\mu\text{m}$ / $\pm1^{\circ}$ (with respect to center of backside pad). Maximum molding excess $\pm20\mu\text{m}$ / $\pm75\mu\text{m}$ versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 8/85

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	VDDA	Voltage at VDDA	Referenced to GNDA	-0.3	6	V
G002	I(VDDA)	Current in VDDA		-20	100	mA
G003	VDDIO	Voltage at VDDIO	Referenced to GNDA	-0.3	6	V
G004	I(VDDIO)	Current in VDDIO		-20	100	mA
G005	GNDIO	Voltage at GNDIO	Referenced to GNDA Supply voltage at VDDA or VDDIO applied	-0.3	0.3	V
G006	V(C1V8)	Voltage at C1V8	Referenced to GNDIO	-0.3	2.0	V
G007	I(C1V8)	Current in C1V8		-20	20	mA
G008	V(PORTC)	Voltage at PORTC(3:0)	Referenced to GNDA	-0.3	VDDA + 0.3	V
G009	I(PORTC)	Current in PORTC(3:0)		-20	20	mA
G010	V()	Pin Voltage, all remaining pins	Referenced to GNDA	-0.3	VDDIO + 0.3	V
G011	I()	Pin Current, all remaining pins		-20	20	mA
G012	Vd()	ESD Susceptibility	HBM, 100 pF discharged through 1.5 k Ω		2	kV
G013	Tj	Junction Temperature		-40	140	°C

 $^{^{\}rm 1}$ JEDEC document JEP 155: 500V HBM allows safe manufacturing with a standard ESD control process

THERMAL DATA

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-40		125	°C
T02	Ts	Permissible Storage Temperature Range		-40		125	°C
T03	Tpk	Soldering Peak Temperature	tpk < 20 s, convection reflow			245	°C
			MSL 3 (max. floor life 168 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.				
T04	Rthja	Thermal Resistance Chip to Ambient	Package mounted on PCB according to JEDEC standard		50		K/W

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 9/85

ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA = 4.5...5.5 V, VDDIO = 2.25...VDDA V, GNDA = GNDIO = 0 V, Tj = -40...140 °C, unless otherwise noted

Item	Symbol	Parameter	Conditions	N47		l M	Unit
No.				Min.	Тур.	Max.	
Gene		In 1 0 1 1 1 1					
001	VDDA	Analog Supply Voltage	referenced to GNDA	4.5	5.0	5.5	V
002	I(VDDA)	Analog Supply Current	no external load, LED off refer to Table 145 for details				
			without analog output buffer		18.4		mA
			with analog output buffer		22.2		mA
003	VDDIO	I/O Supply Voltage	referenced to GNDIO	2.25		VDDA	V
004	I(VDDIO)	I/O Supply Current	ports configured to BiSS/ABZ/Analog, default				
			register values, 600 RPM (iC-PZ2656)		2.0		- A
			VDDIO = 5.5 V, no external load, NRES = low VDDIO = 2.25 V, no external load, NRES = high		3.8 14.5		mA mA
			VDDIO = 5.5 V, no external load, NRES = high		15.0		mA
005	SR(VDDIO)	Slewrate of VDDIO	in range 1.0 VVDDIOon	25			V/s
006	V(C1V8)	Digital Core Voltage	generated internally	1.62	1.8	1.98	V
007	α ()e,mx	Maximum Permissible	α ()e = $\frac{d\omega}{dt}$ for sine/cosine			200	10 ⁶
		Acceleration	u.				rade/s ²
			for linear systems: a()mx = $\frac{\alpha()e,mx}{2\pi} \cdot r_{nat}$ with r_{nat} native resolution, i.e. line distance of				
			the incremental track on the scale				
			PZ01L: $r_{nat} = 204.8 \mu m \rightarrow a()mx = 6500 \frac{m}{c^2}$				
Digita	I I/O Pads	1			ı		
201	V()	Pin-Open Voltage CFG(2:0)		40	50	60	%VDDIO
202	Vt()hi	Threshold high CFG(2:0)				90	%VDDIO
203	Vt()med	Threshold medium CFG(2:0)		40		60	%VDDIO
204	Vt()lo	Threshold low CFG(2:0)		10			%VDDIO
205	Vt()hys	Threshold Hysteresis			10		%VDDIO
	, ,	medium/high or low/medium					
		CFG(2:0)					
211	Rpu()	Pull-Up Resistor CFG(2:0)	V(CFG) = 0 V	130	200	280	kΩ
212	Rpd()	Pull-Down Resistor CFG(2:0)	V(CFG) = VDDIO	130	200	280	kΩ
213	Vt()hi		pins of PORTA/B/C only if configured as inputs			70	%VDDIO
		SCL, SDA, ADA, PORTA(3:0), PORTB(2:0), PORTC(3:0)					
215	Vt()lo	, , , , , ,	pins of PORTA/B/C only if configured as inputs	30			%VDDIO
213	V L()IO	SCL, SDA, ADA, PORTA(3:0),	pins of FORTA/B/C only if configured as inputs	30			%VDDIO
		PORTB(2:0), PORTC(3:0)					
217	Vt()hys	Threshold Hysteresis NRES,	pins of PORTA/B/C only if configured as inputs		15		%VDDIO
		GPIO(1:0), SCL, SDA, ADA,					
		PORTA(3:0), PORTB(2:0), PORTC(3:0)					
219	lpu()	Pull-Up Current NRES.	V()= GNDIO	-50		-8	uA
2.0	ipa()	GPIO(1:0), ADA, PORTA(3:0),	pins of PORTA/B/C only if configured as inputs	-50			u u A
		PORTB(2:0), PORTC(3:0)	pin GPIO(0) only for GPIO0_CFG = 00/01				
			pin GPIO(1) only for GPIO1_CFG = 00/01 and IC not in reset				
220	lpd()	Pull-Down Current GPIO(1:0)	V() = VDDIO	8		50	uA
220	ipu()	di-bown current of 10(1.0)	pin GPIO(0) only for GPIO0_CFG = 10	O		30	u A
			pin GPIO(1) only for GPIO1_CFG = 10 or IC in				
			reset				
222	lsc()hi	Short-Circuit Current high	V() = GNDIO, pins of PORTA/B/C only if config-				-
222	150()[[GPIO(1:0), ACL, PORTA(3:0),	ured as outputs				
		PORTB(2:0), PORTC(3:0)	VDDIO = 2.5 V ±10 %	-55			mA
			VDDIO = 3.3 V ±10 %	-75			mA
			VDDIO = 5 V ±10 %	-120			mA

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 10/85

ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA = 4.5...5.5 V, VDDIO = 2.25...VDDA V, GNDA = GNDIO = 0 V, Tj = -40...140 °C, unless otherwise noted

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
224	Isc()lo	Short-Circuit Current Io GPIO(1:0), SCL, SDA, ACL, PORTA(3:0), PORTB(2:0), PORTC(3:0)	V() = VDDIO, pins of PORTA/B/C only if configured as outputs VDDIO = $2.5 \text{ V} \pm 10 \text{ \%}$ VDDIO = $3.3 \text{ V} \pm 10 \text{ \%}$ VDDIO = $5 \text{ V} \pm 10 \text{ \%}$.346.	55 75 120	mA mA mA
226	Vs()hi	Saturation Voltage high GPIO(1:0), ACL, PORTA(3:0), PORTB(2:0), PORTC(3:0)	Vs()hi = VDDIO - V() I() = -4 mA			0.4	V
227	Vs()lo	Saturation Voltage low GPIO(1:0), ACL, PORTA(3:0), PORTB(2:0), PORTC(3:0)	I() = 4 mA			0.4	V
228	ls()lo	Saturation Current low SCL, SDA	V() = 400 mV V() = 600 mV	3 6			mA mA
229	tr()	Rise Time GPIO(1:0), ACL, PORTA(3:0), PORTB(2:0), PORTC(3:0)	CL = 20 pF, rise 3070 % VDDIO PADx_CFG = 00 and GPIO(1:0) PADx_CFG = 01 PADx_CFG = 10 PADx_CFG = 11			220 75 15 3.5	ns ns ns
230	tf()	Fall Time GPIO(1:0), ACL, PORTA(3:0), PORTB(2:0), PORTC(3:0)	CL = 20 pF, fall 7030 % VDDIO PADx_CFG = 00 and GPIO(1:0) PADx_CFG = 01 PADx_CFG = 10 PADx_CFG = 11			220 75 15 3.5	ns ns ns
231	tf()	Fall Time SCL, SDA	CL = 10100 pF, fall 7030 % VDDIO VDDIO = 2.253.0 V VDDIO = 3.05.5 V	15 20		150 250	ns ns
PRC F	hotocurrer	nt Amplifiers and Comparators					"
306	fc,r()hi	Cut-Off Frequency PRC (-3 dB)		1000			kHz
Quad	Photocurre	nt Amplifier					
501	fc,a()hi	Cut-Off Frequency Analog (-3 dB)		240			kHz
505	Vv()dc,eff	Effective DC Signal Level	LED_CTRL = 1 and LED_CUR = 0 (sum control) Vv()dc,eff = Vv()dc - Vv()d with Vv()d dark signal level	280		480	mV
Analo	g Output						
A01	Vout()dc	Output Signal DC Level	ANA_SEL = 00	48	50	52	%VDDA
A02	Vout()ac	Output Signal AC Amplitude	ANA_SEL = 00 ANA_OS = 0 ANA_OS = 1		1000 250		mV mV
A03	I()mx	Permissible Load Current	ANA_SEL = 00 ANA_OS = 0 ANA_OS = 1	-1 -6		1 6	mA mA
A04	C()mx	Permissible Capacitive Load	ANA_SEL = 00			50	pF
ABZ (Senerator						
C01	AAabs (INL)	Absolute Angle Accuracy (Integral Nonlinearity)	ldeal waveform, f()sin ≤ 60 kHz IPO_FILT1 = 0xEA, IPO_FILT2 = 0x4		0.5		°e
C02	AArel (DNL)	Relative Angle Accuracy (Differential Nonlinearity)	Ideal waveform IPO_FILT1 = 0xEA, IPO_FILT2 = 0x4 ABZ_PER $\leq 2^{\text{SYS}}$ _eff x 256, f()sin = 128 Hz ABZ_PER $\leq 2^{\text{SYS}}$ _eff x 256, f()sin = 2.56 kHz ABZ_PER $\leq 2^{\text{SYS}}$ _eff x 1024, f()sin = 128 Hz ABZ_PER $\leq 2^{\text{SYS}}$ _eff x 1024, f()sin = 2.56 kHz see also Figure 1		15 2.5 35 7		% % %
C03	fout()	Maximum Frequency per Output	ABZ_MTD = 0x0 (default), f()sin ≤ 240 kHz	6			MHz
LED F	ower Contr	rol	<u> </u>				
L01	lop()	Permissible LED Current	except startup	0.5		30	mA
L02	lctrl()	Controlled LED Output Current	refer to Table 145 for details		510		mA
L03	lop()min	Minimum LED Current			50		%lop()

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 11/85

ELECTRICAL CHARACTERISTICS

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
L07	lc,led	LED Constant Current	LED_CUR = 0x0	30	40	70	mA
			LED CUR = 0x1	0	0	0.1	mA
			LED_CUR = 0x2	0.75	1	2.3	mA
			LED_CUR = 0x3	1.5	2	4.3	mA
			LED_CUR = 0x4	3	4	8	mA
			LED_CUR = 0x5	6	8	16	mA
			LED_CUR = 0x6	12	16	29	mA
			LED_CUR = 0x7	24	32	56	mA
Oscill 001	fosc	Oscillator Frequency	I	72	80	88	MHz
	l .	& Voltage Monitoring		12	00	00	IVII IZ
P01	VDDAon	Turn-On Threshold VDDA	increasing voltage at VDDA			3.95	V
FUI	VDDAOII	(power-on release)	indeasing voltage at VDDA			3.95	v
P02	VDDAoff	Turn-Off Threshold VDDA (power-down reset)	decreasing voltage at VDDA	3.00			V
P03	VDDAhys	Threshold Hysteresis VDDA	VDDAhys = VDDAon - VDDAoff	200	300	600	mV
P04	VDDIOpor	Threshold VDDIO for Voltage Regulator (power-on)	increasing voltage at VDDIO			2.20	V
P05	VDDIOon	Turn-On Threshold VDDIO	increasing voltage at VDDIO				
		(diagnosis-ok)	VDDIOSEL = 00 (2.5 V)			2.20	V
		,	VDDIOSEL = 01 (3.3 V)			2.95	V
			VDDIOSEL = 10 (5.0 V)			3.95	V
P06	VDDIOoff	Turn-Off Threshold VDDIO	decreasing voltage at VDDIO				
		(diagnosis-error)	VDDIOSEL = 00 (2.5 V)	1.3			V
		,	VDDIOSEL = 01 (3.3 V)	2.2			V
			VDDIOSEL = 10 (5.0 V)	3.0			V
P07	VDDIOhys	Threshold Hysteresis VDDIO	VDDIOhys = VDDIOon - VDDIOoff				
		_	VDDIOSEL = 00 (2.5 V)		250		mV
			VDDIOSEL = 01 (3.3 V)		200		mV
			VDDIOSEL = 10 (5.0 V)		250		mV
Linea	r Regulator						
R01	C(C1V8)	Recommended Capacity at C1V8			100		nF
Adjus	tment Analo	g					
S01		Minimum Offset Correction	COS_OFF(9:0) = 0x3FF and/or SIN_OFF(9:0) = 0x3FF			-100	mV
S02	COROS()mx	Maximum Offset Correction	COS_OFF(9:0) = 0x1FF and/or SIN_OFF(9:0) = 0x1FF	100			mV
S03	CFA()min	Minimum Amplitude Correction	SC_GAIN = 0x200			0.825	
		Factor	_			0.020	
S04	CFA()mx	Maximum Amplitude Correction Factor	SC_GAIN = 0x1FF	1.20			
S05	.,	Minimum Shift of Phase	SC_PHASE(9:0) = 0x1FF			-10	°е
S06	CORPH()mx	Maximum Shift of Phase	SC_PHASE(9:0) = 0x3FF	10			°e
Temp	erature Sens	sor					u
T01	Trng	Temperature Sensor Range		-50		175	°C
T02	Tres	Temperature Sensor Resolution			0.1		°C
T03	Tacc	Temperature Sensor Accuracy	Tj = -40140 °C and after adjustment at iC-Haus	-3		3	°C
Startu	ıp						
	tstart()	Startup Time	VDDA > VDDAon		14		ms
-			VDDIO > VDDIOpor				1
			EEPROM with valid configuration attached to				1
	1		SCL/SDA				1

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 12/85

ELECTRICAL CHARACTERISTICS

Operating conditions: VDDA = 4.5...5.5 V, VDDIO = 2.25...VDDA V, GNDA = GNDIO = 0 V, Tj = -40...140 °C, unless otherwise noted

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
Serial	Interfaces						
Z01	fBISS	Permissible BiSS-Slave Frequency	point-to-point configuration			20	MHz
			bus configuration (chaining multiple chips)			10	MHz
Z02	fSSI	Permissible SSI-Slave Frequency				10	MHz
Z03	fSPI	Permissible SPI-Slave Frequency	point-to-point configuration			12	MHz
			bus configuration (chaining multiple chips), as of t_{P1} and t_{P3} 2 chips			10	MHz
			3 chips 4 chips			5.88 4.17	MHz MHz
			n chips, n≥2: $f = \frac{100}{7n-4}$			f	MHz
Z04	fl2C	I2C-Master Frequency	EEPROM attached to SCL/SDA		220	400	kHz
Z05	tsample	Period of Adaptive Timeout Sampling Clock (for EDS)	refer to characteristics in BiSS SLAVE on page 43	50	67	75	ns
Z06	tout()adapt	Adaptive Slave Timeout at SLO	BISS_NTOA = 0 refer to timing Figure 4 t _{init} measured as first 1.5 · T(MA) each frame	0.075	t _{init} + 0.2	24	μs
Z07	tout()fixed	Fixed Slave Timeout at SLO	BISS_NTOA = 1 refer to timing Figure 4	16	20	24	μs

ELECTRICAL CHARACTERISTICS: Diagrams

Figure 1: Definition of AB duty cycle variation.

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 13/85

OPERATING REQUIREMENTS: Supply Voltages

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
Supply	Voltages					
1001	$t_{r,VDDIO}$	VDDIO Rise Time		refer to Elec. Char. 005		
1002	VDDIO(t)	Voltage VDDIO at time t			VDDA(t)	V

Figure 2: Supply voltages at startup

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 14/85

OPERATING REQUIREMENTS: BISS Slave

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
BiSS p	rotocol					
I101	t _{frame}	Permissible Frame Repetition		(*)	indefinite	
I102	t _C	Permissible Clock Period		50		ns
I103	t _{L1}	Clock Signal hi Level Duration		20	t _{out}	ns
I104	t _{L2}	Clock Signal lo Level Duration		20	t _{out}	ns
I105	t _{busy}	Processing Time with Start Bit Delay			5⋅t _C	
I106	t _{P3}	Propagation Delay: SLO stable after MA lo \rightarrow hi	CL = 20 pF, rise to 70 % VDDIO or fall to 30 % VDDIO PADx_CFG = 00 PADx_CFG = 01 PADx_CFG = 10 PADx_CFG = 11		400 150 60 35	ns ns ns ns
1107	t _{out}	Adaptive Slave Timeout		refer to Ele	ec. Char. Z06	
1108	t _{S1}	Setup Time: SLI stable before MA hi \rightarrow lo		5		ns
I109	t _{H1}	Hold Time: SLI stable after MA hi $ ightarrow$ lo		10		ns

(*) Allow tout to elapse.

Figure 3: BiSS timing

Figure 4: BiSS slave timeout

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 15/85

OPERATING REQUIREMENTS: SSI Slave

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SSI pr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
1201	t _{frame}	Permissible Frame Repetition		(*)	indefinite	
1202	t _C	Permissible Clock Period		100		ns
1203	t _{L1}	Clock Signal hi Level Duration		25	t _{out}	ns
1204	t _{L2}	Clock Signal lo Level Duration		25	t _{out}	ns
1205	t _{RQ}	REQ Signal lo Level Duration		50		ns
1206	t _{P3}		PADx_CFG = 00		400 150 60 35	ns ns ns
1207	t _{out}	Adaptive Slave Timeout		refer to E	lec. Char. Z06	

Figure 5: SSI timing

Figure 6: SSI slave timeout

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 16/85

OPERATING REQUIREMENTS: SPI Slave

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
SPI pro	otocol					
I301	t _{C1}	Permissible Clock Cycle Time		83.33		ns
1302	t _{L1}	Clock Signal lo Level Duration		30		ns
1303	t _{L2}	Clock Signal hi Level Duration		30		ns
1304	t _{S1}	Setup Time: NCS lo before SCLK lo \rightarrow hi		41.67		ns
1305	t _{H1}	Hold Time: NCS lo after SCLK lo → hi	valid for SPI mode 3	41.67		ns
1306	t _{H3}	Hold Time: NCS lo after SCLK hi \rightarrow lo	valid for SPI mode 0	41.67		ns
1307	t _{W2}	Wait Time: NCS hi before SCLK change		200		ns
1308	t _{W1}	Wait Time: between NCS lo \rightarrow hi and NCS hi \rightarrow lo		200		ns
1309	t _{H2}	Hold Time: MOSI stable after SCLK lo → hi		5		ns
I310	t _{S2}	Setup Time: MOSI stable before SCLK lo \rightarrow hi		15		ns
I311	t _{P1}	Propagation Delay: MISO stable after SCLK hi \rightarrow lo	CL = 20 pF, rise to 70 % VDDIO or fall to 30 % VDDIO PADA_CFG = 00 PADA_CFG = 01 PADA_CFG = 10 PADA_CFG = 11		400 150 60 35	ns ns ns
1312	t _{P3}	Propagation Delay: MISO stable after MOSI change	CL = 20 pF, rise to 70 % VDDIO or fall to 30 % VDDIO PADA_CFG = 00 PADA_CFG = 01 PADA_CFG = 10 PADA_CFG = 11		400 150 60 35	ns ns ns
1313	t _{P4}	Propagation Delay: MISO stable after NCS hi → lo	CL = 20 pF, rise to 70 % VDDIO or fall to 30 % VDDIO PADA_CFG = 00 PADA_CFG = 01 PADA_CFG = 10 PADA_CFG = 11		400 150 60 35	ns ns ns ns
I314	t _{P2}	Propagation Delay: MISO hi impedance after NCS lo → hi			35	ns

Figure 7: SPI timing

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 17/85

OPERATING REQUIREMENTS: Absolute Data Interface (ADI)

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
ADI pr	otocol (SS	il)				
I401	f _{ACL}	ADI clock frequency	II	150 1500		
1402	T _{ACL}	ADI clock period		1/f	ACL	
1403	t _{hi} , t _{lo}	ADI clock hi/lo level duration		50		%T _{ACL}
1404	T _{frame}	Frame repetition period	Normal operation Startup, if ADI_CFG(1) = 0 Startup, if ADI_CFG(1) = 1	1500 1500 200		μs μs μs
I405	ts	Setup time: ADA stable before falling ACL edge		100		ns
I406	t _h	Hold time: ADA stable after falling ACL edge		100		ns
1407	t _{out}	Permissible slave timeout	Rising-edge-triggered monoflop Falling-edge-triggered monoflop Dual-edge-triggered monoflop	11.5 11.5 5.75	40 40 40	μs μs μs

Figure 8: ADI timing with SSI protocol

ADA sampling and setup/hold times

ADA is sampled with the double frequency of ACL. With each rising ACL edge iC-PZ processes the previously sampled ADA, i.e., the ADA that has been sampled with the previous falling ACL edge. As a consequence, ADA has to be stable after $t = (T_{ACL}/2 - t_s)$ after a rising ACL edge.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 18/85

SIGNAL DEFINITIONS

Figure 9: Definition of positive direction of movement

Figure 10: Definition of mechanical degrees / radians (°m / radm) and electrical degrees / radians (°e / rade)

A section of a code disc and a section of a linear scale are shown in Figure 10. Six sine/cosine periods are generated by either of them as illustrated. In this example, the code disc has to be moved by 30 mechanical degrees (°m) to generate those six signal periods. Each period represents 360 electrical degrees (°e).

If radians are used instead of degrees, the code disc has to be moved by $\frac{\pi}{6}$ mechanical radians (radm). Respectively, each period represents 2π electrical radians (rade).

In this document, the frequency of sine/cosine signals is denoted as f()sin.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 19/85

LINEAR REGULATOR

Figure 11: External capacitance blocking pin C1V8

An integrated linear regulator generates the digital core voltage of 1.8 V from the digital supply VDDIO/GNDIO. To ensure a stable regulated voltage, a blocking capacitor at pin C1V8 is required. The recommended capacitance is given in R01 on page 11.

Note: The regulated voltage is for internal use only and must not be used to supply additional circuitry. Sensing the regulated voltage with a high impedance, e. g. for safety reasons, is possible.

EEPROM SELECTION

For proper usage of iC-PZ, an external I2C-EEPROM with the characteristics defined below is required:

- Size of 2 kbit up to 16 kbit (larger sizes are recommended to provide storage for BiSS EDS and user data).
- Supply voltage from 1.8 V up to desired VDDIO. If VDDIO is shorted to VDDA, the supply voltage may begin at 3.0 V (see P02 on page 9).
- · Compatible with 400 kHz I2C bus mode.
- Page size ≥ 8 byte.
- 7-bit I2C device address is set to 0x50.
- Protocol with one address byte only, as shown in Figure 48

ATTENTION: EEPROMs which consider block selection bits as don't care should not be used. This can be the case with 8-pin devices, as well as with 5-pin devices not featuring A2, A1, A0 pins.

Be aware of potential conflicts:

If a user addresses memory beyond the 2 kbit range, iC-PZ configuration data will be overwritten.

If further I2C slave devices are operated on the same bus, higher device addresses may be occupied.

RPL (register protection level) may be passed over.

POWER-ON RESET

To ensure correct startup, the system is reset until all power-on thresholds defined in ELECTRICAL CHARACTERISTICS section Power-On Reset are exceeded:

- · VDDA must exceed threshold VDDAon
- · VDDIO must exceed threshold VDDIOpor

STARTUP

A system-restart is triggered by one of the following events:

- Power-on reset (VDDA, VDDIO)
- Pin NRES (0 = reset, 1 = active)
- Command REBOOT via serial interface

While iC-PZ is in reset state or during power-up phase, pin GPIO(0) is low, indicating that the system is not yet ready. Communication using one of the serial interfaces is not possible at this time. After leaving the

reset state, iC-PZ performs its internal startup routines, including reading the configuration stored in the external EEPROM and optionally the multiturn position from an external multiturn-device. During startup, communication using one of the serial interfaces is not allowed. Afterwards, pin GPIO(0) goes high and iC-PZ is ready.

In case the communication with the EEPROM fails, iC-PZ will load its default configuration.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 20/85

INTERFACE PORTS

Five interfaces, of which three are multiplexed to ports A, B, and C, are provided by iC-PZ. The individual port configuration is made via pins CFG(2:0). By connecting those pins to the appropriate levels GNDIO (L), VDDIO/2 (M), or VDDIO (H), one of the configurations shown in Table 1 is selected. The pin assignment to the corresponding configuration is defined in Table 2. For further configurations refer to INTERFACE PORTS CONFIGURATION on page 29.

Note: As BiSS and SSI share its physical ports, the interface of choice has to be enabled additionally via SSI_EN. Refer to BiSS SLAVE on page 43.

Pin Leve	el		Port Funct	tion	
CFG(2)	CFG(1)	CFG(0)	Port A	Port B	Port C
L	L	L	SPI	BiSS/SSI	ABZ
L	L	М	SPI	BiSS/SSI	Analog
L	L	Н	SPI	BiSS/SSI	UVW
Н	L	L	BiSS/SSI	ABZ	UVW
Н	L	М	BiSS/SSI	ABZ	Analog
Н	L	Н	BiSS/SSI	UVW	Analog
Н	Н	L	SPI	ABZ	UVW
Н	Н	М	SPI	ABZ	Analog
Н	Н	Н	SPI	UVW	Analog
М	L	Н	ABZ	UVW	Analog
	Others		Reserv	ed (do not	use)

Table 1: Pin configured port function

	Pin Assignn	nent								
Port A	PORTA(3)	PORTA(2)	PORTA(1)	PORTA(0)						
Port B	-	PORTB(2)	PORTB(1)	PORTB(0)						
Port C	PORTC(3)	PORTC(2)	PORTC(1)	PORTC(0)						
Interface	Interface S	Interface Signal								
BiSS/SSI	-	MA	SLI	SLO						
SPI	NCS	SCLK	MOSI	MISO						
ABZ	-	Α	В	Z						
UVW	-	U	V	W						
Analog	NSIN	PSIN	NCOS	PCOS						

Table 2: Pin assignment to interface signal

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 21/85

CIRCUIT DESIGN PROPOSALS

Figure 12: Circuit schematic with BiSS, ABZ and UVW port configuration

Figure 13: Circuit schematic with SPI, ABZ and analog port configuration

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 22/85

MEMORY ORGANIZATION

Besides the on-chip RAM, data from an external EEPROM or other I2C devices can be accessed via iC-PZ. An overview of the memory organization is given in Table 3.

Registers are organized in banks. Banks 0x00..0x0E contain device configuration registers, which are located in the on-chip RAM. Registers 0x40..0x7F are not

assigned to banks and are accessed directly disregarding the active bank. Banks 0x20..0x3F can be used to access registers in an external EEPROM. Additional MT devices can be configured via bank 0x20. EDS and user data is stored in banks 0x24..0x3F. Additionally, data from up to four external I2C devices can be accessed using banks 0x40..0x4F.

Bank	Address	Content	Location	RPL
0x000x0E	0x000x3F	iC-PZ Device Configuration (volatile)	On-chip RAM	r/w
all	0x400x7F	iC-PZ Direct Access	On-chip RAM	n.a.
0x20	0x000x3F	0x000x3F MT Device Configuration (e.g. iC-PV) EEPROM: 0x000 - 0x03		r/w
X	X	iC-PZ Device Configuration (non-volatile)	EEPROM: 0x040 - 0x0FF	n.a.
0x240x3F	0x000x3F	EDS, User Data	EEPROM: 0x100 - 0x7FF	r/w
0x400x43	0x000x3F	I2C device 0 data	I2C device memory	n.a.
0x440x47	0x000x3F	I2C device 1 data	I2C device memory	n.a.
0x480x4B	0x000x3F	I2C device 2 data	I2C device memory	n.a.
0x4C0x4F	0x000x3F	I2C device 3 data	I2C device memory	n.a.

Table 3: Memory organization overview

EEPROM Access

The external EEPROM is used to store the iC-PZ device configuration non-volatile, so that the data will be remaining after power-down. The memory addressing and data transmission to exchange the device configuration with the EEPROM is fully handled by iC-PZ, when receiving the appropriate command from any serial interface. Either a single bank or the complete device configuration can be read or written. When writing a bank to the EEPROM, the CRC value is calculated automatically by iC-PZ. Refer to COMMANDS on page 53 for details.

The device configuration data is secured by an 8-bit CRC value for every bank. Each CRC value has a Hamming Distance of 3 bits. After power-on, the data is read in bank by bank. In case a CRC value is incorrect, the bank is read again up to 3 times in total. If the CRC value of a bank is correct, the data is used. Otherwise, the bank uses its default data values. Invalid value are marked individually for each bank in CRC_STAT and as an error bit in DIAG.

The EDS and user data is read and written immediately to/from the EEPROM, when accessing an address in the appropriate bank. As I2C is used for the communication between iC-PZ and EEPROM, data transmission will take a certain amount of time until completed. The corresponding address accessed in the EEPROM can be calculated according to the formula below:

EEPROM ADR = (BSEL - 0x20) * 0x40 + ADR

Bank Selection

The active bank is selected via BSEL. Registers 0x40..0x7F are not affected and can always be accessed disregarding the active bank.

BSEL(7:0)	Addr. 0x40;	bit 7:0	default: 0x00
Code	Value		
	Active bank		
0x000x4F			

Table 4: Bank Selection

Register Protection Level (RPL)

The banks containing device configuration, EDS and user data, can be individually protected from write and/or read access. Therefore, a Register Protection Level (RPL) can be set to the active bank by either executing the command RPL_SET_RO (read only) or RPL_SET_NA (no access, neither read nor write). To become persistent, the RPL settings have to be written to the EEPROM. When writing a complete bank from the on-chip RAM to the EEPROM, the RPL is stored automatically. For any other bank located in external memory, the RPL settings are stored in bank 0xF. By writing all banks to the EEPROM, all RPL settings become persistent. To check the RPL that is set for the active bank, the command RPL_GET can be executed.

Once the RPL is stored in the EEPROM, it can not be removed anymore. Nevertheless, setting the RPL from read only (RO) to no access (NA) is possible.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 23/85

REGISTER MAP

Register m	ар							
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Interface Po	rts Configura	tion		'		'	'	<u>'</u>
0x0, 0x00	PADM_C	FG(1:0)	PADC_0	CFG(1:0)	PADB_0	CFG(1:0)	PADA_0	CFG(1:0)
0x0, 0x01		PORTC_DIS	PORTB_DIS	PORTA_DIS		-		SEL(1:0)
Interpolator				1			1	
0x0, 0x02				reserved	[0x21] ¹			
0x0, 0x03				IPO_FII	_T1(7:0)			
0x0, 0x04		re	eserved [00000]	<i>I</i> ¹			IPO_FILT2(2:0))
0x0, 0x05				reserved	[0xE6] ¹			
0x0, 0x06				reserved	[0x10] ¹			
System Defi	nition							
0x0, 0x07		SYS_O	VR(3:0)			-	CD_FLIP	CD_INV
Position Dat	a Length							
0x0, 0x08	_				ST_P	DL(5:0)		
0x0, 0x09	-				MT_P	DL(5:0)		
Absolute Da	ta Interface (A	ADI)						
0x0, 0x0A			ADI_OS(4:0)				ADI_SBL(2:0)	
0x0, 0x0B		ADI_MSO(2:0)		ADI_EBP		ADI_E	BL(3:0)	
0x0, 0x0C				ADI_CFG(7:1)				reserved [0] 1
0x0, 0x0D				-				ADI_CFG(8)
Singleturn P	osition Evalu	ation						
0x0, 0x0E			-			reserve	d [0x0] ¹	
0x0, 0x0F	RAN_FLD		reserved [001]	1		RAN_T	OL(3:0)	
0x0, 0x10				CFG_CF	C_0(7:0)			
Adjustment	Analog (statio	c)						
0x1, 0x00	cos_o	FF(1:0)				-		
0x1, 0x01				cos_c	FF(9:2)			
0x1, 0x02	SIN_OF	FF(1:0)				-		
0x1, 0x03			T	SIN_O	FF(9:2)			
0x1, 0x04	SC_GA	IN(1:0)				-		
0x1, 0x05			I	SC_GA	JN(9:2)			
0x1, 0x06	SC_PHA	SE(1:0)				-		
0x1, 0x07				SC_PH/	ASE(9:2)			
	Digital (static	•						
0x1, 0x08	AI_PHA	SE(1:0)				-		
0x1, 0x09				AI_PHA	SE(9:2)			
0x1, 0x0A	AI_SCALE(0)				-			
0x1, 0x0B				AI_SCA				
0x1, 0x10					C_1(7:0)			
	Analog (statio		- read-only,	not stored in	EEPROM			
0x1, 0x20	COS_OF	FS(1:0)		000		-		
0x1, 0x21	011.05	FO(4:0)		cos_o	FFS(9:2)			
0x1, 0x22	SIN_OF	r5(1:0)		OIN OF		-		
0x1, 0x23				SIN_OF	FS(9:2)			

¹ Reserved registers must not be changed (default value in square brackets).

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 24/85

Register m	ар								
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0x1, 0x24	SC_GA	INS(1:0)				-			
0x1, 0x25			1	SC_GA	INS(9:2)				
0x1, 0x26	SC_PHA	SES(1:0)				-			
0x1, 0x27			1	SC_PHA	SES(9:2)				
Adjustment	Digital (statio	+ dynamic)	- read-only,	not stored in	EEPROM				
0x1, 0x28	AI_PHAS	SES(1:0)				-			
0x1, 0x29				AI_PHA	SES(9:2)				
0x1, 0x2A	AI_SCALES(0)				-				
0x1, 0x2B				AI_SCA	LES(8:1)				
Adjustment	Analog Confi	iguration							
0x2, 0x00		SC_GAIN	I_SEL(3:0)			SC_OFF	_SEL(3:0)		
0x2, 0x01			-			SC_PHASI	E_SEL(3:0)		
0x2, 0x02				reserved	l [0x00] ¹				
Adjustment	Digital Config	guration							
0x2, 0x03		AI_S_S	SEL(3:0)			AI_P_S	EL(3:0)		
Adjustment	Eccentricity ((static)							
0x2, 0x04				ECC_A	MP(7:0)				
0x2, 0x05		ECC_AMP(15:8)							
0x2, 0x06				ECC_AN	1P(23:16)				
0x2, 0x07				ECC_AN	1P(31:24)				
0x2, 0x08			ECC_PH	HASE(5:0)				-	
0x2, 0x09				ECC_PH	ASE(13:6)				
0x2, 0x0A				-				ECC_EN	
0x2, 0x10				CFG_CF	RC_2(7:0)				
Analog Outp	out								
0x3, 0x00		-		LED_CONST		LED_CUR(2:0)		LED_CTRL	
0x3, 0x01			-			ANA_OS	ANA_S	SEL(1:0)	
0x3, 0x10				CFG_CF	RC_3(7:0)				
ABZ Genera	tor								
0x4, 0x00				ABZ_P	ER(7:0)				
0x4, 0x01				ABZ_PI	ER(15:8)				
0x4, 0x02				ABZ_PE	R(23:16)				
0x4, 0x03		re	eserved [00000	J ¹		A	ABZ_PER(26:2	4)	
0x4, 0x04				ABZ_H	YS(7:0)				
0x4, 0x05		T	-			ABZ_M			
0x4, 0x06	reserved [0] 1		ABZ_CFG(2:0			ABZ_ZG	ATE(3:0)		
0x4, 0x08					FF(7:0)				
0x4, 0x09					FF(15:8)				
0x4, 0x10				CFG_CF	RC_4(7:0)				
UVW Genera	ator								
0x5, 0x00		-				UVW_PP(4:0)			
0x5, 0x01				<u>-</u>			UVW_0	CFG(1:0)	
0x5, 0x02					OFF(7:0)				
0x5, 0x03					FF(15:8)				
0x5, 0x10				CFG_CF	RC_5(7:0)				

¹ Reserved registers must not be changed (default value in square brackets).

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 25/85

Register ma	ар											
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
BiSS/SSI SIa	ive		L					I				
0x6, 0x00				BISS_I	EM(7:0)							
0x6, 0x01		BISS_EM(15:8)										
0x6, 0x02		BISS_EM(23:16)										
0x6, 0x03		BISS_EM(31:24)										
0x6, 0x04				BISS_\	VM(7:0)							
0x6, 0x05		BISS_WM(15:8)										
0x6, 0x06		BISS_WM(23:16)										
0x6, 0x07		BISS_WM(31:24)										
0x6, 0x08		-			BISS_S	T_DL(5:0)						
0x6, 0x09		-			BISS_M	1T_DL(5:0)						
0x6, 0x0A	-	SSI_EN	SSI_EXT	SSI_GRAY	-	BISS_NTOA	BISS_CRC16	BISS_ENSOL				
0x6, 0x0B		-			BISS_0	CRCS(5:0)						
0x6, 0x10				CFG_CF	RC_6(7:0)							
SPI Slave												
0x7, 0x00				SPI_E	M(7:0)							
0x7, 0x01				SPI_E	M(15:8)							
0x7, 0x02				SPI_EN	Л(23:16)							
0x7, 0x03				SPI_EN	Л(31:24)							
0x7, 0x04				SPI_W	/M(7:0)							
0x7, 0x05				SPI_W	M(15:8)							
0x7, 0x06				SPI_WI	M(23:16)							
0x7, 0x07				SPI_WI	M(31:24)							
0x7, 0x08		-				Γ_DL(5:0)						
0x7, 0x09		-			SPI_M	T_DL(5:0)		T				
0x7, 0x0A			T	-				SPI_EXT				
0x7, 0x0B		-				RCS(5:0)						
0x7, 0x10				CFG_CF	RC_7(7:0)							
FlexCode [®]												
0x8, 0x00				FCL	(7:0)							
0x8, 0x01	-				FCL(14:8)							
0x8, 0x02		1		FCS	5(7:0)							
0x8, 0x03	-				FCS(14:8)							
0x8, 0x10				CFG_CF	RC_8(7:0)							
GPIO												
0x9, 0x00					_M(7:0)							
0x9, 0x01					_M(15:8)							
0x9, 0x02					M(23:16)							
0x9, 0x03					M(31:24)							
0x9, 0x04		GPIO1_M(7:0)										
0x9, 0x05					_M(15:8)							
0x9, 0x06					M(23:16)							
0x9, 0x07					M(31:24)			,				
0x9, 0x08	GPIO1_SEL	GPIO1_DIAG	GPIO1_	CFG(1:0)	GPIO0_SEL	GPIO0_DIAG	GPIO0_	CFG(1:0)				
0x9, 0x10				CFG_CF	RC_9(7:0)							
I2C Master												
0xA, 0x00				I2C_DEV	_ID_0(7:0)							

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 26/85

Register ma	ар										
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0xA, 0x01				I2C_DEV	ID_1(7:0)	1	1	1			
0xA, 0x02				I2C_DEV	_ID_2(7:0)						
0xA, 0x03				I2C_DEV	_ID_3(7:0)						
0xA, 0x04				I2C_T_0(6:0)				I2C_F_0			
0xA, 0x05				I2C_T_1(6:0)				I2C_F_1			
0xA, 0x06		I2C_T_2(6:0)									
0xA, 0x07		I2C_T_3(6:0)									
0xA, 0x10				CFG_CR	C_A(7:0)						
Position Offs	et Singletur	n									
0xB, 0x00					F(7:0)						
0xB, 0x01				ST_OF							
0xB, 0x02					(23:16)						
0xB, 0x03					(31:24)						
0xB, 0x10				CFG_CR	C_B(7:0)						
Position Offs	et Multiturn										
0xC, 0x00				MT_O							
0xC, 0x01					F(15:8)						
0xC, 0x02					F(23:16)						
0xC, 0x03					F(31:24)						
0xC, 0x10				CFG_CR	C_C(7:0)						
Temperature	Monitoring			TEMP	1(7.0)						
0xD, 0x00 0xD, 0x01			_	TEMP_	1(7:0)	TEMP	1 1/11.0\				
0xD, 0x01				TEMP	2/7:0)	I EIVIF_	L_1(11:8)				
0xD, 0x02 0xD, 0x03			_	I CIVIF_	2(7:0)	TEMD	L_2(11:8)				
0xD, 0x03				_		1 LIVII _	TEMP_LT_2	TEMP_LT_1			
0xD, 0x10				CFG_CR	C D(7:0)						
Profile (to be	modified)			0. 0_0.							
0xE, 0x01	mounica			FDS BAI	NK_X(7:0)						
0xE, 0x02				BISS_PROFIL)					
0xE, 0x03				BISS_PROFIL							
0xE, 0x04					3_X(7:0)	<u>, </u>					
0xE, 0x05					2_X(7:0)						
0xE, 0x06					1_X(7:0)						
0xE, 0x07				SERIAL_	0_X(7:0)						
BiSS Identifie	er (to be mo	dified)									
0xE, 0x08				DEV_ID_	5_X(7:0)						
0xE, 0x09				DEV_ID_	_4_X(7:0)						
0xE, 0x0A				DEV_ID_	3_X(7:0)						
0xE, 0x0B				DEV_ID_	_2_X(7:0)						
0xE, 0x0C	· · ·	· · ·		DEV_ID_	_1_X(7:0)						
0xE, 0x0D				DEV_ID_	_0_X(7:0)						
0xE, 0x0E					_1_X(7:0)						
0xE, 0x0F					_0_X(7:0)						
0xE, 0x10				CFG_CR	C_E(7:0)						

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 27/85

Register ma	ар										
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Bank Selecti	on										
0x40				BSE	_(7:0)						
Profile											
0x41		EDS_BANK(7:0)									
0x42		BISS_PROFILE_ID_1(7:0)									
0x43				BISS_PROF	LE_ID_0(7:0)						
0x44		SERIAL_3(7:0)									
0x45		SERIAL_2(7:0)									
0x46				SERIA	1(7:0)						
0x47		SERIAL_0(7:0)									
Revision & Id	dentification										
0x48				ID(7:0)						
0x49		ID(15:8)									
0x4A		ID(23:16)									
0x4B		ID(31:24)									
0x4C		SYS(3:0) REV(3:0)									
GPIO							<u> </u>				
0x4D		- GPIO_IN(1:0) GPIO_OUT(1:0)									
Temperature	Sensor					()					
0x4E	Oction			TFM	P(7:0)						
0x4E					P(15:8)						
Presets				T E IVII	(10.0)						
0x50				et Di	DE(7:0)						
0x50 0x51					RE(7:0) E(15:8)						
0x52					E(23:16)						
0x52					E(31:24)						
0x54					RE(7:0)						
0x55					E(15:8)						
0x56					E(23:16)						
0x57					E(31:24)						
0x58					RE(7:0)						
0x59					RE(15:8)						
0x5A					RE(7:0)						
0x5B					RE(15:8)						
-	ion Configura	tion			.()						
0x5C	Joinigala		EL2(3:0)			AC SE	EL1(3:0)				
0x5D	AC_ETO	,	reserved [000]	1			UNT(3:0)				
	ta Interface (A	DI) – receiv				7.5_50	()				
0x5E	u mienace (A	21) - 1606IV	-	Lation Dita		۵۵۱ ۵	SB(3:0)				
I2C Device D	ata					ADI_C	55(0.0)				
0x60	ula			ISC DAT	A_0(7:0)						
0x60 0x61					A_0(7:0) A_0(15:8)						
0x61 0x62					A_0(15:8) A_1(7:0)						
0x62 0x63					A_1(7:0) A_1(15:8)						
UXUO					A_1(15.6) A_2(7:0)						

¹ Reserved registers must not be changed (default value in square brackets).

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 28/85

Register ma	р										
Bank,Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0x65		I2C_DATA_2(15:8)									
0x66		I2C_DATA_3(7:0)									
0x67					A_3(15:8)						
Diagnosis											
0x68				DIAC	G(7:0)						
0x69				DIAG	(15:8)						
0x6A		DIAG(23:16)									
0x6B		DIAG(31:24)									
0x6C				ERF	2(7:0)						
0x6D				ERR	(15:8)						
0x6E				ERR(23:16)						
0x6F				ERR(31:24)						
0x70				WAR	N(7:0)						
0x71				WAR	N(15:8)						
0x72				WARN	(23:16)						
0x73				WARN	(31:24)						
Bank CRC Sta	atus										
0x74				CRC_S	TAT(7:0)						
0x75				CRC_S	TAT(15:8)						
Commands											
0x76				CMD_S	TAT(7:0)						
0x77				CME	0(7:0)						
BiSS Identifie	er										
0x78				DEV_II	0_5(7:0)						
0x79				DEV_II	0_4(7:0)						
0x7A				DEV_II	0_3(7:0)						
0x7B				DEV_I	0_2(7:0)						
0x7C				DEV_I	0_1(7:0)						
0x7D				DEV_I	0_0(7:0)						
0x7E				MFG_II	D_1(7:0)						
0x7F				MFG_II	D_0(7:0)						

Table 5: Register map

Please note: Register marked with '-' are not implemented. They cannot be written to and are always read as '0'.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 29/85

INTERFACE PORTS CONFIGURATION

Slew Rate I/O-Pads

The output slew rates for the digital I/O pads of PORTA, PORTB, PORTC, and the Absolute Data Interface are configured via PADx_CFG(1:0). Refer to ELECTRICAL CHARACTERISTICS 229 and 230 for details. Faster drivers support higher output frequencies but may increase interference.

PADA_CFG	(1:0)	Addr. 0x0, 0x00;	bit 1:0	default: 10
PADB_CFG	(1:0)	Addr. 0x0, 0x00;	bit 3:2	default: 10
PADC_CFG	(1:0)	Addr. 0x0, 0x00;	bit 5:4	default: 10
PADM_CFG	S(1:0)	Addr. 0x0, 0x00;	bit 7:6	default: 01
Code	Desc	ription		
00	Slow	Slow output driver (e.g. I2C, ADI-slow)		
01	Medi	Medium output driver (e.g. ADI-fast)		
10	Fast output driver (e.g. BiSS, ABZ)			
11	Ultra fast output driver			

Table 6: I/O Pads Configuration

Port Disabling

If ports are not used, disabling them via PORTx_DIS is recommended to prevent noise caused by potential crosstalk.

PORTA_DIS	Addr. 0x0, 0x01;	bit 4	default: 0
PORTB_DIS	Addr. 0x0, 0x01;	bit 5	default: 0
PORTC_DIS	Addr. 0x0, 0x01;	bit 6	default: 0
Bit	Description		
0	Port is enabled		
1	Port is disabled		

Table 7: Port Disabling

VDDIO Monitoring

The VDDIO supply voltage can be monitored for undervoltage. Therefore, VDDIOSEL has to be set accordingly. In table 8 the nominal supply voltages for VDDIO are given. For details on the monitored undervoltage-levels, refer to section Power-On Reset & Voltage Monitoring in the ELECTRICAL CHARACTERISTICS.

VDDIOSEL(1:0)	Addr. 0x0, 0x01;	bit 1:0	default: 00
Code	Desci	ription		
00	VDDI	O = 2.5 V		
01	VDDI	O = 3.3 V		
10	VDDI	O = 5.0 V		
11	Illega	I		

Table 8: VDDIO Selection

Rev F1, Page 30/85

LED POWER CONTROL

The embedded blue LED is controlled by an on-chip regulator. One of two control modes can be selected via LED_CTRL. The signal path is shown in Figure 14.

In Square Control Mode, the amplitudes of the analog signals are kept at a constant level. The LED power control uses the signal at the input of the interpolator as process value. Signal amplitude is typically 1000 mV.

In Sum Control Mode, the DC values of the analog signals are kept constant. In that case, the LED power control uses the signals at the outputs of the photocurrent amplifiers as process value. Signal amplitudes vary depending on the contrast of the system.

The control current of the LED can be limited to a maximum level via LED_CUR. This is useful to avoid peak LED currents, especially during startup.

The LED power control can be switched off via LED_CONST. If so, the LED is running with a constant current. In that case the current is set according to the value for LED_CUR. Signal DC levels and amplitudes depend on the contrast of the system and the distance of the chip to the code disc. As the LED current is not controlled in a closed loop, this mode is suitable for signal adjustment and alignment. By setting LED_CUR to 0x1 (0 mA), the LED can be switched off.

LED_CTRL	Addr. 0x3, 0x00; I	bit 0	default: 0
Code	Description		
0	Square Control Mode		
1	Sum Control Mode		

Table 9: LED Control Mode

LED_CUR(2	:0) Addr. 0x3, 0x00; bit 3:1 default: 0x0
Code	Description
0x0	40 mA
0x1	0 mA
0x2	1 mA
0x3	2 mA
0x4	4 mA
0x5	8 mA
0x6	16 mA
0x7	32 mA

Table 10: LED Current Limit

LED_CONS	T Addr. 0x3, 0x00; bit 4	default: 0
Code	Description	
0	Controlled current with limit	
1	Constant LED current	

Table 11: LED Constant Current

Figure 14: Analog signal paths and LED control in square and sum control mode

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 31/85

INTERPOLATOR

A digital control loop provides a filtered interpolator position. For setting up the filter, two use cases are distinguished:

Use case	Description
Before analog adjustment	First system startup, analog autocalibration not yet executed
After analog adjustment	Analog autocalibration completed

Parameters IPO_FILT1 and IPO_FILT2 should be set according to the use-cases above. The default values IPO_FILT1 = 0x6E and IPO_FILT2 = 0x4 ensure stable filter operation before the first analog autocalibration after startup is executed. After the first analog autocalibration has been completed, the parameters should be changed to IPO_FILT1 = 0xEA and IPO_FILT2 = 0x4.

IPO_FILT1(7:0) Addr. 0x0, 0x03; bit 7:0 default	t: 0x6E
Code	Use case	
0x6E	Before analog adjustment	
0xEA	After analog adjustment	

Table 12: Filter Parameter 1

IPO_FILT2(2	2:0)	Addr. 0x0, 0x04;	bit 2:0	default: 0x4
Code	Use	case		
0x4 Suitable for any use case				

Table 13: Filter Parameter 2

SINGLETURN POSITION EVALUATION

The absolute position information is provided by the sampled Pseudo Random Code (PRC) track. The sampled incremental track is interpolated to increase the resolution of the singleturn position. An internal counter is implemented that is incremented with each new sample of the incremental track. That counter is initialized during startup with the first sampled absolute position.

During operation, each sampled absolute position is compared to the internally counted position. In case both values do not match, the counted position is replacing the sampled position. This way the system provides a mechanism to mask single misreadings during PRC sampling.

An error is reported in DIAG(11) as soon as the tolerance for mismatches of the sampled and counted position set via RAN_TOL is exceeded. In case of an error, the counter value is either kept (RAN_FLD = 0) or reloaded with the sampled absolute position (RAN_FLD = 1). This feature is meant to provide increased availability of a valid position information in test environments, e. g. using a dirty code disc in the lab.

Setting RAN_TOL = 0x0 and not receiving an error in DIAG(11) during operation indicates that zero misreadings have occurred.

If the internal counter is initialized with a wrong absolute position during startup (e.g. due to dirt on the PRC track of the disc), the error in DIAG(11) will not be set until RAN_TOL is exceeded.

RAN_TOL(3:0)	Addr. 0x0, 0x0F; bit 3:0 default: 0x4
Code	Value
0x0	No mismatches tolerated
0x1	Low mismatching tolerance
0x4	Medium mismatching tolerance
0xF	High mismatching tolerance

Table 14: PRC Mismatching Tolerance

RAN_FLD	Addr. 0x0, 0x0F; bit 7	default: 1
Code	Description	
0	Internal counter will never be startup	reloaded after
1	Internal counter is reloaded in DIAG(11)	case of error

Table 15: PRC Forced Loading

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 32/85

ANALOG OUTPUT

Signal Routing

The signals routed to the analog output port can be selected via ANA_SEL. As shown in Figure 15, three routings along the analog signal path are selectable.

ANA_SEL(1	(c) Addr. 0x3, 0x01; bit 1:0 default: 00
Code	Description
00	Buffered signals, amplitude and driver set by ANA_OS
10	Pre Signal Conditioning signals (photocurrent amplifiers, weak output)
11	Post Signal Conditioning signals (weak output)

Table 16: Analog Signal Selection

By setting ANA_SEL = 00, the analog signals are adjusted and amplified before being routed to the analog output port. This setting is recommended to be used during operation. Driver strength is selected via ANA_OS.

By setting ANA_SEL = 10, the raw signals of the photocurrent amplifiers are routed to the analog output port. Those signals can be used for testing and alignment purposes only and may not see any load, as they do only have weak drivers.

By setting ANA_SEL = 11, the signals being affected by the analog adjustment are routed to the analog output port. Those signals can also be used for testing and alignment purposes only and may not see any load, as they do only have weak drivers.

Output Driver

The driver strength and amplitude of the analog output port is set via ANA_OS. The driver is only applied to the routing ANA SEL = 00.

ANA_OS	Addr. 0x3, 0x01; bit 2	default: 1
Code	Description	
0	1 mA, 1000 mV amplitude (amplification 2.5 V dc	x1),
1	6 mA, 250 mV amplitude (amplification x 2.5 V dc	0.25),

Table 17: Analog Output Setting

Note: The amplitudes described for ANA_OS are only valid for LED_CTRL = 0 and LED_CONST = 0. For other settings, the amplitudes are not controlled and depend on the system properties like the chosen LED power control (sum or constant LED current) or the contrast of the system.

Figure 15: Analog signal path with single-ended signals referenced to GNDA (NCOS and NSIN not shown)

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 33/85

ABZ GENERATOR

AB Periods

Making use of the FlexCount® feature, the resolution of the incremental (quadrature) signals can be arbitrarily adjusted. The AB periods per mechanical revolution (rotary) or per maximum scale length (linear) can be set via ABZ PER.

ABZ_PER(7:0)	Addr. 0x4, 0x00;	bit 7:0	default:
ABZ_PER(15:8)	Addr. 0x4, 0x01;	bit 7:0	0x0002000
ABZ_PER(23:16)	Addr. 0x4, 0x02;	bit 7:0	
ABZ_PER(26:24)	Addr. 0x4, 0x03;	bit 2:0	
Code	AB periods		
0x0000000	2 ²⁷		
0x0000001	1		
0x0000002	2		
0x0002000	8192		
0x7FFFFFD	$2^{27} - 3$		
0x7FFFFFE	$2^{27} - 2$		
0x7FFFFFF	$2^{27}-1$		

Note: The maximum value allowed for the AB periods depends on the resolution of the system: ABZ_PER $\leq 2^{SYS_eff+12}.$

Example: For the rotary system with \varnothing 26 mm (SYS_eff = 8), the maximum value allowed is = 2^{8+12} = 2^{20} .

Table 18: AB Periods

For rotary systems, ABZ_PER defines the number of AB periods per mechanical revolution.

For linear systems with a native resolution of r_{nat} (line distance of the incremental track on the scale), one AB period corresponds to the length I_{AB} of:

$$I_{AB} = \frac{2^{SYS_eff}}{ABZ_PER} \cdot r_{nat}$$

Example:

For iC-PZ205, r_{nat} = 204.8 µm and SYS_eff = 15 To set one AB period corresponding to the length I_{AB} = 1.6µm, ABZ PER has to be set to:

$$\mbox{ABZ_PER} \ = \ \begin{subarray}{l} r_{lab} & 2^{SYS_eff} & = \ \begin{subarray}{l} $\frac{204.8 \mu m}{1.6 \mu m}$ & 2^{15} & = \ 2^{22}$ \end{subarray}$$

The speed of a linear system is limited to

$$v_{\text{max}} = \frac{I_{AB}}{4 \cdot \text{MTD}}$$

Example:

In the above example with $I_{AB} = 1.6\mu m$ and the maximum MTD = 37.5 ns, the maximum possible speed is

$$v_{\text{max}} = \frac{1.6 \mu \text{m}}{4 \cdot 37.5 \text{ns}} = 10.7 \frac{\text{m}}{\text{s}}$$

Independent of the above calculation, the speed must not exceed the limit given in Table 145.

AB Direction

The direction of the incremental signals can be switched via ABZ_CFG(0). The signals for all possible use cases are illustrated in Figure 16.

ABZ_CFG(0	O) Addr. 0x4, 0x06; bit 4 d	efault: 0	
Code	AB direction		
0	A leading B for pos. mech. direction of movement		
1	B leading A for pos. mech. direction of mo	vement	

Table 19: AB Direction

Figure 16: ABZ signals for different mechanical and electrical directions of movement (here: ABZ ZGATE = 0x4)

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 34/85

Z Gating

Several gating options for the index signal Z can be configured via ABZ_ZGATE.

ABZ_ZGATE	(3:0) Addr. 0x4, 0x06;	bit 3:0	default: 0x0
Code	Function		
0x0	Z at AB = 10		
0x1	Z at AB = 11		90° Z gating
0x2	Z at AB = 01		options
0x3	Z at AB = 00		
0x4	Z at A = 1		
0x5	Z at A = 0		180° Z gating
0x6	Z at B = 1		options
0x7	Z at B = 0		
0x8	Z at A		360° Z gating
0x9	Z at B	op	otions (ungated)
Others	Not allowed		
Note: Z is always located at the internal zero position, AB is adapted with respect to Z.			

Table 20: Z Gating

ABZ signals for mechanical movement in positive direction (see SIGNAL DEFINITIONS on page 18) and ABZ CFG(0) = 0 (A leading B) are shown in Figure 17.

Figure 17: Gating and position of the Z signal

Z Polarity

The polarity of Z can be switched via ABZ CFG(1).

ABZ_CFG(1	Addr. 0x4, 0x06; bit 5	default: 0	
Code	Z polarity		
0	Standard output (Z active high)		
1	Inverted output (Z active low)		

Table 21: Z Polarity

Hysteresis

As illustrated in Figure 18, the configurable hysteresis ABZ_HYS corresponds to a slip existing between the two rotating directions. In this way multiple switching of the ABZ signals at the reversing point of a changing direction of movement can be prevented.

ABZ_HYS(7:0)	Addr. 0x4, 0x04; bit 7	7:0 default: 0x20	
Code	ABZ hysteresis	Value	
unsigned	2 · ABZ_HYS · LSB	2 · ABZ_HYS 214 · 360°e	
0x00	0 LSB	0.000°e	
0x01	2 LSB	0.044°e	
0x20	64 LSB	1.406°e	
0xFE	508 LSB	11.162°e	
0xFF	510 LSB	11.206°e	

Note: In FlexCode®-systems, "Value" changes as described in FLEXCODE® on page 69.

Table 22: ABZ Hysteresis

Figure 18: AB signals with 2 LSB hysteresis. Signals for max. AB resolution (top, 2¹² AB-Periods per sine-period) and for half of the max. resolution (bottom, 2¹¹ AB-Periods per sine-period)

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 35/85

Minimum Transition Distance

The Minimum Transition Distance (MTD) sets the minimum time between two successive edges of the A and B signals. Setting ABZ_MTD is useful to avoid errors in the motor controller. Some controllers need a Minimum Transition Distance, and at speeds close to the maximum controllable speed AB-jitter may cause some faster edges.

ABZ_MTD(3:0)	Addr. 0x4, 0x05; bit 3:0 default: 0	
Code	ABZ minimum transition distance	
0x0	37.5 ns	
0x1	50.0 ns	
0x2	62.5 ns	
0x3	75.0 ns	
0x4	87.5 ns	
0x5	100.0 ns	
0x6	112.5 ns	
0x7	125.0 ns	
0x8	250.0 ns	
0x9	500.0 ns	
0xA	750.0 ns	
0xB	1.0 µs	
0xC	2.5 µs	
0xD	5.0 µs	
0xE	7.5 µs	
0xF	10.0 µs	
Note: The given times are typical values, i.e., they hold for fosc = 80 MHz.		

Table 23: ABZ Minimum Transition Distance

If the movement of the motor causes faster AB signals than the MTD (fine-dashed signals in Figure 19), the AB-edges will be output **incorrectly** with the fixed MTD between two successive edges. However, if AB-signals are continuously output with MTD, the internal AB-position increasingly differs from the actual absolute position. If the difference is too large, AB-calculation will no longer work correctly, and incorrect AB-signals will be output, e.g. with incorrect direction.

Figure 19: Minimum Transition Distance (MTD)

- ① equal to MTD
- 2 faster than MTD
- 3 slower than MTD

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 36/85

ABZ Offset

An individual offset can be applied to the ABZ signals via ABZ_OFF. The offset is added before the ABZ signals are transferred, as shown in Figure 21.

ABZ_OFF(7:0)	Addr. 0x4, 0x08; bit	7:0 default: 0x0000
ABZ_OFF(15:8)	Addr. 0x4, 0x09; bit	7:0
Code	ABZ offset	Value in °m
Unsigned		ABZ_OFF 216 · 360°m
0x0000	0	0.0000
0x0001	1	0.0055
0x0002	2	0.0110
0xFFFD	$2^{16} - 3$	359.9835
0xFFFE	2 ¹⁶ – 2	359.9890
0xFFFF	2 ¹⁶ – 1	359.9945

Table 24: ABZ Offset

ABZ Preset

To automatically calculate the offset that is related to a certain position, a preset can be applied. First, the desired preset has to be set via ABZ_PRE. Then, by executing the command ABZ_PRESET, the offset is calculated so that the current position is set according to ABZ_PRE. Refer to COMMANDS on page 53 for details.

For linear systems, ABZ_OFF is calculated similarly, 360°m has to be replaced with the max. length of the scale. For iC-PZ205, e.g., the max. scale length is 204.8 μ m \cdot 2¹⁵ \approx 6.71 m.

ABZ_PRE(7	7:0)	Addr. 0x58;	bit 7:0	default: 0x0000
ABZ_PRE(1	15:8)	Addr. 0x59;	bit 7:0	
Value	/alue Preset value for ABZ interface			

Table 25: ABZ Preset

Figure 20: ABZ offset for a system with 9 periods

Figure 21: Programming of position offsets

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 37/85

Startup

The startup behavior of the ABZ generator is configured via ABZ CFG(2).

ABZ_CFG(2	2) Addr. 0x4, 0x06; bit 6	default: 0
Code	ABZ Startup Behavior	
0	AB = 11, Z = 0 during startup, until position found	
1	ABZ counting from 0 position to actual position with programmed MTD	

Table 26: ABZ Startup Behavior

Startup behavior of the ABZ generator for both settings of ABZ CFG(2) is illustrated in Figure 22 and Figure 23. For better orientation, different phases of the system startup are distinguished:

iC-PZ is in the reset state, either due to power-down, external pin NRES or

command REBOOT.

READ CFG

Configuration is read from an external

EEPROM.

STUP POS

Startup phase of the position processing

(MT + ST).

WAIT

Waiting time >50 µs, before the ABZ

generator is enabled.

STUP ABZ

Startup phase of the ABZ generator.

NORMAL OP Normal operation (output of valid ABZ

signals, as configured).

Figure 22: ABZ startup with ABZ CFG(2) = 0

For ABZ CFG(2)=0 the fastest MTD of 37.5 ns is used internally to minimize the duration of the startup phase. Once the position is found, ABZ is then immediately output with the programmed MTD. At this point the invalid AB-transition 11 ightarrow 00 is possible. As

illustrated in Figure 22, users can evaluate status bit DIAG(6) = not(ABZ_RDY) (e.g. via GPIO). Once this bit becomes 1, the ABZ startup is finished and valid signals are output henceforth.

Figure 23: ABZ startup with ABZ_CFG(2) = 1

For $ABZ_CFG(2) = 1$ it is possible that ABZ changes during EEPROM readout, as the levels of ABZ at the 0 position depend on the configuration. As illustrated in Figure 23, users can evaluate status bit

DIAG(24) = not(RDY) (e.g. via GPIO). Once this bit becomes 1, a valid position (ST + MT) is available via the serial interfaces and ABZ is enabled (begins to count to the position) at least 50 µs later.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 38/85

UVW GENERATOR

Pole Pairs, Direction and Polarity

The UVW generator of iC-PZ provides motor commutation signals for up to 32 pole pairs.

UVW_PP(4:0)	Addr. 0x5, 0x00; bit 4:0 default: 0x04
Code	UVW Pole Pairs
0x00	32
0x01	1
0x04	4
0x1F	31

Table 27: UVW Pole Pairs per Mechanical Revolution

For rotary systems, UVW_PP defines the number of UVW pole pairs per mechanical revolution.

For linear systems with a native resolution of r_{nat} (line distance of the incremental track on the scale), one UVW period corresponds to the length I_{UVW} of:

$$I_{UVW} = \frac{2^{SYS_{eff}}}{UVW_{PP}} \cdot r_{nat}$$

Example:

For iC-PZ205, r_{nat} = 204.8 µm and SYS_eff = 15. For UVW_PP = 0x8, the length of one UVW period is:

$$I_{UVW} \,$$
 = $\frac{2^{15}}{8} \cdot 204.8 \mu m \approx 0.84 \, m$

Via UVW_CFG(0) the direction and via UVW_CFG(1) the polarity of the UVW signals can be adjusted, as shown in Figure 24.

UVW_CFG(0) Addr. 0x5, 0x01; bit 0	default: 0
Code	UVW direction	
0	Standard direction	
1	Reversed direction	

Table 28: UVW Direction

UVW_CFG(1) Addr. 0x5, 0x01; bit 1	default: 0
Code	UVW polarity	
0	Standard polarity	
1	Inverted polarity (180° phase shift)	

Table 29: UVW Polarity

Figure 24: UVW pole pairs, direction and polarity for pos. mech. movement

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 39/85

UVW Offset

The offset UVW_OFF is added to the internal position before being used by the UVW generator (Figure 26). Figure 25 illustrates the effect of UVW_OFF.

UVW_OFF(7:0) UVW_OFF(15:8)	Addr. 0x5, 0x02; bit 3 Addr. 0x5, 0x03; bit 3	
Code	UVW position offset	
Unsigned		UVW_OFF 216 · 360°m
0x0000	0	0.0000
0x0001	1	0.0055
0x0002	2	0.0110
0xFFFD	$2^{16} - 3$	359.9835
0xFFFE	$2^{16} - 2$	359.9890
0xFFFF	2 ¹⁶ – 1	359.9945

Table 30: UVW Offset

For linear systems, UVW_OFF is calculated similarly, 360°m has to be replaced with the max. length of the scale. For iC-PZ205, e.g., the max. scale length is 204.8 μ m · 2¹⁵ \approx 6.71 m

UVW Preset

To automatically calculate the offset that is related to a certain position, a preset can be applied. First, the desired preset has to be set via UVW_PRE. Then, by executing the command UVW_PRESET, the offset is calculated so that the current position is set according to UVW_PRE. Refer to COMMANDS on page 53 for details.

UVW_PRE(7:0)	Addr. 0x5A;	bit 7:0	default: 0x0000
UVW_PRE(15:8)	Addr. 0x5B;	bit 7:0	
Value	Prese	et value for UV	W interface	

Table 31: UVW Preset

Figure 25: UVW offset for a system with 3 pole pairs

Figure 26: Programming of position offsets

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 40/85

Startup

During startup, the UVW generator outputs constant signal levels, i.e., UVW = 000, until valid signals can be output.

Figure 27 shows the UVW startup behavior in the context of the overall system startup, where different phases can be distinguished:

RESET iC-PZ is in the reset state, either due

to power-down, external pin NRES or

command REBOOT.

READ CFG The configuration is read from an exter-

nal EEPROM.

STUP POS Startup phase of the position processing

(MT + ST).

WAIT Waiting time >50 µs, before the UVW

generator is enabled.

STUP UVW Startup phase of the UVW generator.

NORMAL OP Normal operation (output of valid UVW

signals, as configured).

As illustrated in Figure 27, users can evaluate status bit DIAG(7) = not(UVW_RDY) (via GPIO). Once this bit becomes 1, the UVW startup is finished and valid signals are output henceforth.

Figure 27: UVW startup

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 41/85

POSITION SETTINGS

Position Data Length

The number of bits used for the singleturn (ST) and multiturn (MT) position data can be set via ST_PDL and MT_PDL. Those settings affect the position data sent by any serial interface (BiSS, SSI and SPI). However, the position data format can be adjusted individually for any of those interfaces. Refer to BiSS SLAVE, SSI SLAVE and SPI SLAVE for details.

ST_PDL(5:0) Addr. 0x0,	0x08; bit 5:0	default: 0x20
Code	Value		
032	Maximum number of singleturn position data bits. Unused bits are set to zero from right to left.		

Table 32: Singleturn Position Data Length

MT_PDL(5:0) Addr. 0x0, 0x09; bit 5:0 default: 0x20	
Code	Value	
	Maximum number of multiturn position data bits. Unused bits are set to zero from left to right.	

Table 33: Multiturn Position Data Length

Note: Further hints on properly setting MT_PDL when using external MT slaves are given on page 55.

Position Offset

An individual offset can be applied to the ST and MT position via ST_OFF and MT_OFF. The offset is added before the position data is transferred by one of the serial interfaces as shown in Figure 28.

ST_OFF(7:0)	Addr. 0xB, 0x00; bit 7:0 default:
ST_OFF(15:8)	Addr. 0xB, 0x01; bit 7:0 0x00000000
ST_OFF(23:16)	Addr. 0xB, 0x02; bit 7:0
ST_OFF(31:24)	Addr. 0xB, 0x03; bit 7:0
Code	Singleturn position offset
0x00000000	0
0x00000001	1
0x00000002	2
0xFFFFFFD	$2^{32}-3$
0xFFFFFFE	$2^{32}-2$
0xFFFFFFF	$2^{32}-1$

Table 34: Singleturn Position Offset

MT_OFF(7:0)	Addr. 0xC,0x00; bit 7:0 default:
MT_OFF(15:8)	Addr. 0xC,0x01; bit 7:0 0x00000000
MT_OFF(23:16)	Addr. 0xC,0x02; bit 7:0
MT_OFF(31:24)	Addr. 0xC,0x03; bit 7:0
Code	Singleturn position offset
0x00000000	0
0x00000001	1
0x00000002	2
0xFFFFFFD	$2^{32}-3$
0xFFFFFFE	$2^{32}-2$
0xFFFFFFF	$2^{32}-1$

Table 35: Multiturn Position Offset

Position Preset

To automatically calculate the offset that is related to a certain position, a preset position can be applied. First, the desired preset position has to be set via ST_PRE and MT_PRE. Then, by executing either the command MT_PRESET or MTST_PRESET, the position offsets are calculated so that the current position is set according to ST_PRE and MT_PRE. Refer to COMMANDS on page 53 for details.

ST_PRE(7:0)	Addr. 0x50;	bit 7:0	default:
ST_PRE(15:8)	Addr. 0x51;	bit 7:0	0x00000000
ST_PRE(23:16)	Addr. 0x52;	bit 7:0	
ST_PRE(31:24)	Addr. 0x53;	bit 7:0	
Code	Singleturn position preset		

Table 36: Singleturn Position Preset

MT_PRE(7:0)	Addr. 0x54;	bit 7:0	default:
MT_PRE(15:8)	Addr. 0x55;	bit 7:0	0x00000000
MT_PRE(23:16)	Addr. 0x56;	bit 7:0	
MT_PRE(31:24)	Addr. 0x57;	bit 7:0	
Code	Multiturn position preset		

Table 37: Multiturn Position Preset

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 42/85

Figure 28: Programming of position offsets

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 43/85

BISS SLAVE

The implemented BiSS slave interface can be selected via port configuration pins as described in INTERFACE PORTS on page 20. As BiSS and SSI share its physical ports, the interface of choice has to be enabled additionally via SSI_EN. A BiSS transmission is illustrated in Figure 29. Data is sampled on the first rising edge of MA and transferred with MSB first.

SSI_EN	Addr. 0x6, 0x0A; bit 6	default: 0
Code	Value	
0	BiSS enabled	
1	SSI enabled	

Table 38: SSI Enable

Note: For in-depth information about BiSS visit www.biss-interface.com.

Figure 29: BiSS transmission sequence

BiSS Slave	Performance	
Parameter	Symbol	Description
Clock Rate	1/t _C	Refer to Item No. Z01 on page 12
Process.T.	t _{busy}	Refer to Item No. I105 on page 14
Timeout	t _{out}	Refer to Item No. Z06, Z07 on page 12
SCD Chann	el 1: Positio	n Data
Bits/cycle	ID	Description
032	MT	Multiturn position - MT_OFF (right-aligned)
032	ST	Singleturn position - ST_OFF (left-aligned)
1	nE ¹	Error bit ERR
1	nW ¹	Warning bit WARN
(6)	LC	Sign-of-Life Counter
6 (16)	CRC ²	Polynomial 0x43 (0x190D9), adjustable start value.
CD Channe	I: Control Da	ta
Bits/cycle	ID	Description
1	nCDM ¹ , CDS	Support of bidirectional register access
	Slave IDs	1
	Commands	Support of selected BiSS Commands according to Table 49.
Notes	1 Low active	e. ² Bit inverted transmission.

Table 39: BiSS slave performance

Single Cycle Data

The Single Cycle Data (SCD) is transmitted in the format highlighted blue in Figure 29. According to Table 39, the format includes the multiturn position followed by the singleturn position, one low-active error bit, one low-active warning bit, an optional 6-bit sign-of-life counter (LC) and a 6-bit or 16-bit CRC value. The position data is affected by the offsets MT_OFF and ST_OFF.

The data length of the ST and MT values can be individually set in bits via BISS_ST_DL and BISS_MT_DL. Bit count not filling up full bytes is supported. If the values set for BISS_ST_DL and BISS_MT_DL exceed the resolution provided by the system, the surplus bits are padded with zeros.

BISS_ST_DL	5:0) Addr. 0x6, 0x08; bit 5:0 default: 0x18
Code	Value
032	Number of singleturn bits that are transmitted. Padded right with zeros if more than available. 0 is only allowed for BISS MT DL≠0.

Table 40: BiSS Singleturn Data Length

BISS_MT_DL	.(5:0)	Addr. 0x6, 0x09;	bit 5:0	default: 0x18
Code	Value			
032	Padde	er of multiturn bits ed left with zeros if nly allowed for BIS	more tha	an available.

Table 41: BiSS Multiturn Data length

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 44/85

The total data length (ST, MT, nERR, nWARN, LC) is limited to 57 bits for the 6-bit CRC polynomial and 64 bits for the 16-bit CRC polynomial excluding the bits needed for the CRC value. Refer to BISS_CRC16 for details.

Note: Common used profiles, like the BiSS Encoder Profile BP1 and BP3, do have certain restrictions regarding data length to be taken into account.

The sources triggering the active-low error bit nERR and the active-low warning bit nWARN can be selected individually. The diagnosis information logged in DIAG are only transferred via BiSS, if the according bit in the masks BISS_WM and BISS_EM is set to 1. Otherwise an error or warning will not be forwarded for corresponding events masked with 0. Refer to DIAGNOSIS on page 64 for further information.

BISS_EM(7	:0)	Addr. 0x6, 0x00;	bit 7:0	default:
BISS_EM(1	5:8)	Addr. 0x6, 0x01;	bit 7:0	0x11000F13
BISS_EM(2	3:16)	Addr. 0x6, 0x02;	bit 7:0	
BISS_EM(3	1:24)	Addr. 0x6, 0x03;	bit 7:0	
Bit	Desc	ription		
31:0	Activa	ate error for corresp	onding D	IAG bit

Table 42: BiSS Error Bit Mask

BISS_WM(7	':0)	Addr. 0x6, 0x04;	bit 7:0	default:
BISS_WM(1	15:8)	Addr. 0x6, 0x05;	bit 7:0	0x0200C00C
BISS_WM(2	23:16)	Addr. 0x6, 0x06;	bit 7:0	
BISS_WM(3	31:24)	Addr. 0x6, 0x07;	bit 7:0	
Bit	Descr	ription		
31:0	Activa	ate warning for corr	espondin	g DIAG bit

Table 43: BiSS Warning Bit Mask

Sign-of-Life Counter

The transmission of a 6-bit sign-of-life counter (LC) can be enabled via BISS_ENSOL. The LC is initialized with 0, but counts from 1 to 63 skipping the 0 when wrapping. The counter is incremented with each BiSS frame.

BISS_ENSC	DL Addr. 0x6, 0x0A; bit 0	default: 0
Code	Value	
0	No sign-of-life counter is transmitted	
1	A 6-bit sign-of-life counter is transmitted	

Table 44: BiSS Enable Sign-of-life Counter

Cyclic Redundancy Check

The Cyclic Redundancy Check (CRC) value is transmitted in its inverted state at the end of each BiSS frame. The CRC start value is defined by BISS_CRCS. Via BISS_CRC16 the usage of either a 6-bit or a 16-bit CRC polynomial is selected.

BISS_CRCS	S(5:0)	Addr. 0x6, 0x0B;	bit 5:0	default: 0x00
Code	Value			
0x000x3F		ralue for BiSS CRO sed by all slaves or		tion (both 6 and 16 S channel

Table 45: BiSS CRC Start Value

BISS_CRC1	16 Addr. 0x	x6, 0x0A; bit 1 default: 0
Code	CRC HEX Code	Description
0	0x43	6-bit CRC polynomial: X ⁶ + X ¹ + X ⁰ Hamming Distance: 3 max data length: 57 bits
1	0x190D9	16-bit CRC polynomial: X ¹⁶ +X ¹⁵ +X ¹² +X ⁷ +X ⁶ +X ⁴ +X ³ +X ⁰ Hamming Distance: 6 max data length: 64 bits

Table 46: BiSS CRC Polynomial Selection

Fixed & Adaptive Timeout

Either a fixed or an adaptive timeout for BiSS communication can be selected via BISS_NTOA. The adaptive BiSS timeout is recommended for fastest communication speed.

BISS_NTO	A Addr. 0x6, 0x0A; bit 2	default: 0
Code	Value	
0	Adaptive BiSS timeout used	
1	Fixed BiSS timeout used	

Table 47: BiSS Not Timeout Adaptive

The adaptive BiSS timeout is set according to the period of the BiSS MA clock T_{MA} and the internal sampling frequency $1/T_{SAMPLE}$ (see Elec. Char. item no. Z06). First, one and a half periods of the MA clock from first falling to second rising edge within each BiSS frame are measured during operation. Then, the timeout is calculated according to the equation below:

$$T_{\text{SAMPLE}} = \frac{16}{3 * \textit{fosc}}$$

Where fosc is the system clock frequency (see Elec. Char. item no. O01 and Z06).

Timeout	Min.	Max.
t _{tout}	1.5 * T _{BISS}	1.5 * T _{BISS} + 3.0 * T _{SAMPLE}

Table 48: Adaptive Timeout Calculations

Note: More information on the adaptive timeout can be found in BiSS application note AN23 at www.biss-interface.com.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 45/85

BiSS protocol commands

The following BiSS interface protocol commands are implemented.

CD Channel: BiSS Protocol Commands					
CMD	Availability	ailability Function			
Addressed					
00	Yes	Activate Single-Cycle Data channels			
01	_*	Deactivate control communication			
10	_	Reserved			
11	_	Reserved			
Broadcast ((all slaves)				
00	Yes	Deactivate Single-Cycle Data channels			
01	_*	Activate control communication			
10	_	Reserved			
11	_	Reserved			
Notes	* Command w/o function, but will be acknowledged.				

Table 49: BiSS Protocol Commands

Short BiSS-frames with less than 6 MA pulses cause just the one directly following BiSS-frame to contain not refreshed but outdated data. Such reduced BiSS-frames (e. g. BiSS-Init) should be avoided. Alternatively, an intermediate frame with at least 6 MA pulses can be inserted without using its position data.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 46/85

SSI SLAVE

The implemented SSI slave interface can be selected via port configuration pins as described in INTERFACE PORTS on page 20. As BiSS and SSI share its physical ports, the interface of choice has to be additionally enabled via SSI_EN. Refer to chapter BiSS SLAVE on page 43.

Two data formats are supported, of which one has to be selected via SSI_EXT. Regardless of the format, position data is latched on the first falling edge of MA and transferred with MSB first. The position data coding can be switched between Natural Binary Code and Gray Code via SSI_GRAY. A fixed or adaptive timeout can be set via BISS_NTOA. However, the use of an adaptive timeout is not recommended for SSI.

SSI_EXT	Addr. 0x6, 0x0A; bit 5	default: 0
Code	Value	
0	Standard SSI	
1	Extended SSI	

Table 50: Enable Extended SSI

SSI_GRAY	Addr. 0x6, 0x0A; bit 4	default: 0
Code	Value	
0	Natural binary	
1	Gray code	

Table 51: Activate SSI Gray Coding

According to Table 52, the standard SSI protocol format includes the multiturn (MT) and singleturn (ST) position. The ST data length has to be set to exactly 13 bit via BISS_ST_DL. The MT data length has to be set to either 0 or 12 bit via BISS_MT_DL. A transmission using the standard SSI protocol is shown in Figure 30.

Standard SSI Protocol Frame			
Bit Length	Description		
0 or 12	Multiturn position - MT_OFF		
13	Singleturn position - ST_OFF		

Table 52: Standard SSI Protocol Frame

Figure 30: Standard SSI protocol

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 47/85

According to Table 53, the extended SSI protocol format includes the multiturn position followed by the single-turn position, one low-active error bit, one low-active warning bit, an optional 6-bit sign-of-life counter (LC) and a 6-bit or 16-bit CRC value. The format can be adjusted according to section Single Cycle Data in BiSS SLAVE on page 43.

Extended SSI Protocol Frame		
Bit Length	Description	
0 - 32	Multiturn position - MT_OFF	
0 - 32	Singleturn position - ST_OFF	
1	Error bit nERR (active low)	
1	Warning bit nWARN (active low)	
0 or 6	Optional sign-of-life counter (LC)	
6 or 16	CRC (inverted)	

Table 53: Extended SSI Protocol Frame

Figure 31: Extended SSI protocol

Short SSI-frames with less than 6 MA pulses cause just the one directly following SSI-frame to contain not refreshed but outdated data. Such short SSI-frames should be avoided.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 48/85

SPI SLAVE

The implemented SPI slave can be selected via port configuration pins as described in INTERFACE PORTS on page 20. SPI modes 0 and 3 are supported. Idle state of SCLK can be either low or high. Data is sampled on the rising edge of SCLK. Communication is initiated with a falling edge on NCS. While NCS is low, iC-PZ is set active. Each SPI transaction starts with one of the opcodes listed in Table 54. Data is sent byte by byte with MSB first. An SPI transmission including SCLK lines for modes 0 and 3 is illustrated in Figure 32.

OPCODE	OPCODE			
Code	Description			
0x81	Read Registers			
0xCF	Write Registers			
0xA6	Read Position			
0xD9	Write Command			
0x9C	Read Diagnosis			
0x97	Request Data From I2C Slave			
0xD2	Transmit Data To I2C Slave			
0xAD	Get Transaction Info			
0xB0	Activate Slave In Chain			

Table 54: SPI Operation Codes

Figure 32: SPI transmission mode 0 and 3

Note: The output line MISO should have an external pull-up or pull-down resistor. Otherwise, this line will float when tristate (NCS high) and may produce crosscurrent in the following input stage.

Read Registers

Opcode Read Registers (0x81) is used to read data from any number of consecutive registers in the on-chip RAM. As shown in Figure 33, the data stream to be sent on MOSI consists of the opcode 0x81, followed by the address of the first register to be read and a delay byte 0x00. Those first three bytes are also transmitted by iC-PZ on MISO, before sending the requested data (DATA1) from the register at address (ADR). As long as clock is sent and the slave stays active, data (DATA2) from the next register at the incremented address (ADR + 1) is transmitted. This procedure may be continued for any number of consecutive registers.

Figure 33: Read Registers

Write Registers

Opcode Write Registers (0xCF) is used to write data to any number of consecutive registers in the on-chip RAM. As shown in Figure 34, the data stream to be sent on MOSI consists of the opcode 0xCF, followed by the address of the first register to be written and the data. With each data byte the address of the register to be written is incremented by one (ADR+1). If successfully received, the same data stream is transmitted on MISO by iC-PZ.

Figure 34: Write Registers

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 49/85

Read Position

Opcode Read Position (0xA6) is used to read the absolute position data from iC-PZ. As shown in Figure 35, the position data is latched on the first rising edge of SCLK (REQ).

Figure 35: Read Position

As shown in Table 55, the position data format consists of the multiturn position followed by the singleturn position, an error bit, a warning bit, an optional sign-of-life counter (LC) and a CRC value. Singleturn and multiturn position data length can be adjusted individually. The position data includes the offset adjusted via MT_OFF and ST_OFF.

Position Data Format				
Byte Length	Description			
for SPI_EX	for SPI_EXT = 0			
0 - 4	Multiturn Position - MT_OFF			
0 - 4	Singleturn Position - ST_OFF			
1	nERR, nWARN, 6-bit CRC			
for SPI_EX	T=1			
0 - 4	Multiturn Position - MT_OFF			
0 - 4	Singleturn Position - ST_OFF			
1	nERR, nWARN, 6-bit LC			
2	16-bit CRC			

Table 55: SPI Position Data Format

The position information is transmitted in one of two data formats selected via SPI_EXT as shown in Table 56. The first format (SPI_EXT = 0) includes one low-active error bit, one low-active warning bit and a 6-bit CRC. The second format (SPI_EXT = 1) includes one low-active error bit, one low-active warning bit, a 6-bit sign-of-life counter (LC) and a 16-bit CRC. The LC is initialized with 0, but counts from 1 to 63 skipping the 0 when wrapping. The total data length (ST, MT, nERR, nWARN, LC) is limited to 57 bits (SPI_EXT = 0) or 64 bits (SPI_EXT = 1) without the bits needed for the CRC value.

SPI_EXT	Addr. 0x	7, 0x0A; bit 0 default: 0
Code	CRC HEX Code	Description
0	0x43	6-bit CRC polynomial: X ⁶ + X ¹ + X ⁰ Hamming Distance: 3 max data length: 57 bits No sign-of-life counter is transmitted
1	0x190D9	16-bit CRC polynomial: X ¹⁶ +X ¹⁵ +X ¹² +X ⁷ +X ⁶ +X ⁴ +X ³ +X ⁰ Hamming Distance: 6 max data length: 64 bits A 6-bit sign-of-life counter is transmitted. The counter starts at 0 counting from 1 to 63 and omitting 0 when wrapping.

Table 56: SPI Extended Position Data Format

The CRC value is transmitted in its inverted state at the end of each SPI frame. The CRC start value is defined by SPI CRCS.

SPI_CRCS(5:0) Addr. 0x7, 0x0B; bit 5:0 default: 0x00
Code	Value
0x000x3F	Start-value for SPI CRC calculation (both 6 and 16 bit)

Table 57: SPI CRC Start Value

The data length of the ST and MT value can be individually set in bits via SPI_ST_DL and SPI_MT_DL. Bit count not filling up full bytes is supported. Breaking up the position data at any bit during transmission is possible, if further parts of the data stream (nERR/nWARN, LC or CRC) are not needed. If the values set for SPI_ST_DL and SPI_MT_DL do not match the resolution provided by the system, the surplus bits are padded with zeros. In conjunction with some systems (e.g. microcontrollers) using full bytes for the position data is advisable, as it may help making data handling easier.

SPI_ST_DL	(5:0)	Addr. 0x7, 0x08;	bit 5:0	default: 0x18
Code	Value			
032	Number of singleturn bits that are transmitted. padded right with zeros if more than available. 0 is only allowed when SPI_MT_DL ≠0.			

Table 58: SPI Singleturn Data Length

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 50/85

SPI_MT_DL(o) Addr. 0x7, 0x09; bit 5:0 default: 0x18
Code	Value
032	Number of multiturn bits that are transmitted. padded left with zeros if more than available. 0 is only allowed when SPI_ST_DL ≠0.

Table 59: SPI Multiturn Data Length

The sources triggering the active-low error bit nERR and the active-low warning bit nWARN can be selected individually. The diagnosis information logged in DIAG is only transferred via SPI, if the according bit in the masks SPI_WM and SPI_EM is set to 1. Otherwise an error or warning will not be forwarded for corresponding events masked with 0. Refer to DIAGNOSIS on page 64 for further information.

SPI_EM(7:0)	Addr. 0x7, 0x00;	bit 7:0	default:
SPI_EM(15:	8)	Addr. 0x7, 0x01;	bit 7:0	0x11000F13
SPI_EM(23:16)		Addr. 0x7, 0x02;	bit 7:0	
SPI_EM(31:24)		Addr. 0x7, 0x03;	bit 7:0	
Bit	Description			
31:0	Activate error for corresponding DIAG-bit			

Table 60: SPI Error Bit Mask

SPI_WM(7:0	0)	Addr. 0x7, 0x04;	bit 7:0	default:			
SPI_WM(15:8)		Addr. 0x7, 0x05;	bit 7:0	0x0200C00C			
SPI_WM(23	:16)	Addr. 0x7, 0x06;	bit 7:0				
SPI_WM(31:24)		Addr. 0x7, 0x07;	bit 7:0				
Bit	Description						
31:0	Activ	Activate warning for corresponding DIAG-bit					

Table 61: SPI Warning Bit Mask

Write Command

One of the commands specified in COMMANDS on page 53 can be executed via opcode Write Command (0xD9). The command is automatically written to the CMD register at address 0x77 before execution. As shown in Figure 36, the data stream to be sent on MOSI consists of the opcode 0xD9 followed by the command to be executed. Those two bytes are also transmitted by iC-PZ on MISO.

Figure 36: Write Command

Commands do require processing time until completed. Successful completion can be detected by polling the CMD register. Refer to COMMANDS on page 53 for details.

Read Diagnosis

Opcode Read Diagnosis (0x9C) is used to read the registers at address 0x6C to 0x73 containing error ERR and warning WARN information. As shown in Figure 37, only the opcode 0x9C has to be sent on MOSI. The opcode, followed by a delay byte 0x00 and 4 bytes each for ERR and WARN are transmitted by iC-PZ on MISO. Refer to DIAGNOSIS on page 64 for further information.

Figure 37: Read Diagnosis

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 51/85

Request Data From I2C Slave

Data from external devices connected to the I2C master of iC-PZ (e.g. EEPROM) can be requested via opcode Request Data From I2C Slave (0x97). As shown in Figure 38, the opcode followed by the register address of the I2C slave has to be sent on MOSI. The same content is transmitted by iC-PZ on MISO. After the opcode has been received, the initiated I2C communication will take additional time until completed. Opcode Get Transaction Info is used to poll for the current I2C communication status and new data.

Figure 38: Request Data From I2C Slave

Transmit Data To I2C Slave

Data to external devices connected to the I2C master of iC-PZ (e. g. EEPROM) can be transmitted via opcode Transmit Data To I2C Slave (0xD2). As shown in Figure 39, the opcode followed by the register address of the I2C slave and the data byte to be transmitted has to be sent on MOSI. The same content is transmitted by iC-PZ on MISO. After the opcode has been received, the initiated I2C communication will take additional time until completed. Opcode Get Transaction Info is used to poll for the current I2C communication status.

Figure 39: Transmit Data To I2C Slave

Note: For details about the address space of external I2C devices refer to MEMORY ORGANIZATION on page 22.

Note: For details on how to configure the I2C master refer to I2C MASTER on page 60.

Get Transaction Info

Via opcode Get Transaction Info (0xAD) the status of the last initiated SPI transaction is returned. Opcodes Read Position (0xA6) and Get Transaction Info (0xAD) itself are not updating the status byte. As shown in Figure 40, only the opcode has to be sent on MOSI. The opcode followed by the status byte defined in Table 62 is transmitted by iC-PZ on MISO. The data byte is only defined, if opcode Request Data From I2C Slave has been sent before.

Figure 40: Get Transaction Info

SPI STATUS				
Bit	Description			
7	Invalid Opcode			
6:4	-			
3	Illegal Address			
2	Data Request Failed			
1	Slave Busy			
0	Data Valid			

Table 62: SPI Status Byte

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 52/85

Multi-Slave Configurations with iC-PZ

A common SPI bus configuration for two iC-PZ is illustrated in Figure 41. Each slave is selected individually by the SPI master via a dedicated NCS line. Only one slave may communicate at the same time.

Figure 41: SPI bus configuration

Another possibility to connect multiple iC-PZ is by setting up an SPI daisy chain as shown in Figure 42. The MISO of each iC-PZ is connected to the MOSI of the next device. As only a single NCS line is used, individual slaves are selected via opcode Activate Slave in Chain.

Figure 42: SPI daisy chain configuration

Note: Reading the current state of RACTIVE and PACTIVE is not possible.

Activate Slave In Chain

Each iC-PZ provides two separate channels for register and position data transfer that can be switched on and off individually. Register communication with iC-PZ is only possible if RACTIVE = 1. Otherwise register communication attempts are ignored. Position data can only be acquired from iC-PZ if PACTIVE = 1. Otherwise opcode Read Position (0xA6) is ignored.

Figure 43: Activate Slave In Chain

By sending opcode Activate Slave in Chain (0xB0) each iC-PZ acts as a 2-bit shift register containing one RAC-TIVE and one PACTIVE configuration bit. RACTIVE and PACTIVE bits are initialized as '0', turning both data channels off. The SPI Status Byte is reset. Following the opcode, the desired RACTIVE/PACTIVE channel configuration is transmitted. Data bytes corresponding to all possible configurations are shown in Table 65. Slave number 0 is considered to be the last slave in chain directly connected to MISO of the SPI master.

RACTIVE		default: 1
Code	Description	
0	Register communication deactivated	
1	Register communication activated	
!	Register communication activated	

Table 63: RACTIVE (RA)

PACTIVE		default: 1
Code	Description	
0	Position data channel deactivated	
1	Position data channel activated	

Table 64: PACTIVE (PA)

Slaves		RA/PA configuration byte 0								R/	A/PA c	onfig	uratio	n byte	1	
2	0	0	0	0	RA0	PA0	RA1	PA1	Not used							
3	0	0	RA0	PA	RA1	PA1	RA2	PA2	Not used							
4	RA0	PA0	RA1	PA1	RA2	PA2	RA3	PA3	Not used							
5	0	0	0	0	0	0	RA0	PA0	RA1	PA1	RA2	PA2	RA3	PA3	RA4	PA4
6	0	0	0	0	RA0	PA0	RA1	PA1	RA2	PA2	RA3	PA3	RA4	PA4	RA5	PA5
7	0	0	RA0	PA0	RA1	PA1	RA2	PA2	RA3	PA3	RA4	PA4	RA5	PA5	RA6	PA6
8	RA0	PA0	RA1	PA1	RA2	PA2	RA3	PA3	RA4	PA4	RA5	PA5	RA6	PA6	RA7	PA7

Table 65: RA/PA channel configuration bits for 2-8 slaves

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 53/85

COMMANDS

REBOOT Equivalent to power-on	CMD(7:0)		Addr. 0x77; bit 7:0 default: 0x00			
Description Resport Equivalent to power-on Roset the absolute data interface and re-synchronize with the external multitum device	Code	Name	Description			
Description Resport Equivalent to power-on Roset the absolute data interface and re-synchronize with the external multitum device	0x00	<nop_ok></nop_ok>	<return-code: last="" operation="" succeded=""></return-code:>			
SCLEAR DIAG_USERO_RESET DIAG_USERO_SET Set DIAG_USERO_SET DIAG_U	0x10	REBOOT				
DIAG_USERQ_RESET DIAG_USERQ_SET DIAG_USERQ_SET DIAG_USERQ_SET SET DIAG_USERQ_SET Reset DIAG_USERQ_D to Set	0x18	ADI_RESET	Reset the absolute data interface and re-synchronize with the external multiturn device			
DIAG_USER0_SET DIAG_USER1_REST DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER2_SET DIAG	0x20	SCLEAR	Clear the complete diagnosis register			
DIAG_USER0_SET DIAG_USER1_REST DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER1_SET DIAG_USER2_SET DIAG	0x28	DIAG USER0 RESET	Reset DIAG USER(0) to 0			
DIAG_USER1_RESET DIAG_USER1_SET DIAG_USER2_RESET DIAG_USER2_RESET DIAG_USER2_RESET DIAG_USER2_RESET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_DIAG_USER2_DIO 1 Set DIAG_USER2_DIO 1 CRC_CALC Calculate and apply valid CRC checksums for all configuration banks CRC_OHECK Check for invalid CRC checksums in all configuration banks CRC_OHECK Check for invalid CRC checksums in all configuration banks CRC_OHECK Check for invalid CRC checksums in all configuration banks CRC_OHECK Check for invalid CRC checksums in all configuration banks and the RPL information for all banks and the RPL information for all banks and the RPL information for all banks and the RPL information for the EEPROM. Valid CRC checksums are always calculated automatically beforehand for all banks. CONF_READ Read configuration of the active bank (*) from EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the EEPROM. This includes the RPL information	0x29					
DIAG_USER1_SET DIAG_USER2_RESET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET DIAG_USER2_SET Set DIAG_USER2_SET_SET SET DIAG_USER2_SET_SET SET DIAG_USER2_SET_SET SET DIAG_USER2_SET_SET SET DIAG_USER2_SET_SET SET DIAG_USER2_SET_SET DIAG_USER2_SET_SET_SET DIAG_USER2_SET_SET_SET DIAG_USER2_SET_SET_SET_SET DIAG_USER2_SET_SET_SET_SET_SET_SET_SET_SET_SET_SET	0x2A		_ ` ` `			
DIAG_USER2_SET Set DIAG_USER(2) to 1 Calculate and apply valid CRC checksums for all configuration banks CRC_CALC CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK	0x2B		Set DIAG_USER(1) to 1			
DIAG_USER2_SET Set DIAG_USER(2) to 1 Calculate and apply valid CRC checksums for all configuration banks CRC_CALC CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK CRC_CHECK Check for invalid CRC checksums in all configuration banks CRC_CHECK	0x2C		_ ` ` `			
CRC_CALC CRC_CHECK CRC_CHE	0x2D		Set DIAG USER(2) to 1			
CRC_CHECK Check for invalid CRC checksums in all configuration banks Read configuration for all banks from EEPROM. This includes the RPL information for all banks and the RPL information for all banks and the RPL information of the EEPROM. This includes the RPL information for all banks and the RPL information of the EEPROM. This includes the RPL information for all banks and the RPL information of the EEPROM. This includes the RPL information for all banks and the RPL information for the EEPROM. Valid CRC checksums are always calculated automatically beforehand for all banks. Read configuration for the active bank (") from EEPROM. This includes the RPL information of the active bank. CONF_WRITE Wite current configuration of the active bank (") to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank. Wite current configuration of the active bank (") to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank. Wite current configuration of the active bank (") to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank." In the active bank (") to EEPROM. This includes the RPL information of the active bank (") to EEPROM. In the current VMP-position will be equal to VMP-PRE dentical to ABZ_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to ABZ_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to ABZ_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to ABZ_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to ABZ_PRESET, additionally store the containing bank 0x5 to EEPROM. Ident	0x30		_ ,,			
CONF_READ_ALL CONF_WRITE_ALL CONF_WRITE_ALL CONF_WRITE_ALL CONF_WRITE_ALL CONF_WRITE_ALL CONF_READ CONF_WRITE CONF_WR	0x31					
banks and the RPL information for the EEPROM. Valid CRC checksums are always calculated automatically beforehand for all banks. CONF_READ Read configuration for the active bank (*) from EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank. Calculate and apply MT_OFF and ST_OFF so that the current MT:ST-position will be equal to MT_PRESET. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESED. Calculate and apply MT_OFF so that the current MT-position will be equal to MT_P	0x40		Read configuration for all banks from EEPROM. This includes the RPL information for all banks			
the active bank. Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank. Calculate and apply MT_OFF and ST_OFF so that the current MT:ST-position will be equal to MT_PRESET Discape ABZ_PRESET Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESET Calculate and apply MT_OFF so that the current ABZ-position will be equal to MT_PRESET_STORE Discape ABZ_PRESET_STORE Discape MTST_PRESET_STORE Discape MTS	0x41	CONF_WRITE_ALL	banks and the RPL information for the EEPROM. Valid CRC checksums are always calculated			
of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank. Display MTST_PRESET Calculate and apply MT_OFF and ST_OFF so that the current MT:ST-position will be equal to MT_PRE:ST_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE:ST_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Display MT_PRESET Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current UVW-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current UVW-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRESET, additionally store the containing bank 0x6. The Equal to MT_PRESET, additionally store the containing bank 0x8C to EEPROM. Display GPIO_OUTO_SETO Set GPIO_OUT(0) to 0 Set GPIO_OUT(0) to 0 Set GPIO_OUT(0) to 1 Set GPIO_OUT(1) to 1 Display GPIO_OUT1_SET1 Set GPIO_OUT(1) to 1 Set GPI	0x42	CONF_READ				
MT_PRE:ST_PRE Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE Calculate and apply ABZ_OFF so that the current ABZ-position will be equal to ABZ_PRE DX82 ABZ_PRESET Calculate and apply ABZ_OFF so that the current UVW-position will be equal to ABZ_PRE DX88 MTST_PRESET_STORE Identical to MTST_PRESET, additionally store the containing bank 0xBC to EEPROM. Identical to MTST_PRESET_Additionally store the containing bank 0xC to EEPROM. Identical to MT_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to UVW_PRESET, additionally store the co	0x43	CONF_WRITE	Write current configuration of the active bank (*) to EEPROM. This includes the RPL information of the active bank. Valid CRC checksums are always calculated automatically beforehand for the active bank.			
ABZ_PRESET Calculate and apply ABZ_OFF so that the current ABZ-position will be equal to ABZ_PRE Calculate and apply UVW_OFF so that the current UVW-position will be equal to UVW_PRE Identical to MTST_PRESET, additionally store the containing bank 0x8. C to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to ABZ_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x6 to EEPROM. Ide	0x80	MTST_PRESET				
UVW_PRESET Calculate and apply UVW_OFF so that the current UVW-position will be equal to UVW_PRE DX88 MTST_PRESET_STORE Identical to MTST_PRESET, additionally store the containing bank 0xBC to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MSZ_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Identical to UVW_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTST_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x4 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET, additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET_additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET_additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET_additionally store the containing bank 0x6 to EEPROM. Identical to MTS_PRESET_STORE Identical to MTS_PRESET_STORE Identical to	0x81	MT_PRESET	Calculate and apply MT_OFF so that the current MT-position will be equal to MT_PRE			
MTST_PRESET_STORE Identical to MTST_PRESET, additionally store the containing bank 0xBC to EEPROM.	0x82	ABZ_PRESET	Calculate and apply ABZ_OFF so that the current ABZ-position will be equal to ABZ_PRE			
MT_PRESET_STORE ABZ_PRESET_STORE UVW_PRESET_STORE UVW_PRESET_STORE Disable	0x83	UVW_PRESET	Calculate and apply UVW_OFF so that the current UVW-position will be equal to UVW_PRE			
DX8A ABZ_PRESET_STORE UWW_PRESET_STORE Udentical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. Set GPIO_OUT(0) to 0 Set GPIO_OUT(0) to 1 Set GPIO_OUT(1) to 0 Set GPIO_OUT(1) to 1 Set GPIO_OUT(1) to 0 Set GPIO_OUT(1) to 0 Set GPIO_OUT(1) to 1 Set GPI	0x88	MTST_PRESET_STORE	Identical to MTST_PRESET, additionally store the containing bank 0xBC to EEPROM.			
UVW_PRESET_STORE Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM. DVM_OPRESET_STORE IDENTIFY Set GPIO_OUT(0) to 0 DVM_OPRESET_STORE Set GPIO_OUT(0) to 0 DVM_OPRESET_SET_SET Set GPIO_OUT(0) to 1 DVM_OPRESET_SET_SET Set GPIO_OUT(1) to 0 DVM_OPRESET_SET_SET Set GPIO_OUT(1) to 1 DVM_OPRESET_NA Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM DVM_OPRESET_RO Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM DVM_OPRESET_SET_NA Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM DVM_OPRESET_SET_NA Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM DVM_OPRESET_SET_NA Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM DVM_OPRESET_SET_NA Set the register-protection-level status of the active bank (*). The result is stored in CMD_STATE to store the register-protection-level status of the active bank (*). The result is stored in CMD_STATE (DVM_OPPEND AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. DVM_OPPEND Automatic digital re-adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. D	0x89	MT_PRESET_STORE	Identical to MT_PRESET, additionally store the containing bank 0xC to EEPROM.			
GPIO_OUTO_SETO OX90 GPIO_OUTO_SETO OX91 GPIO_OUTO_SET1 Set GPIO_OUT() to 0 OX92 GPIO_OUT1_SET0 OX93 GPIO_OUT1_SET1 OXA0 OXA0 RPL_SET_NA Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM OXA1 RPL_SET_RO Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM OXA2 RPL_GET OXB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OXB1 AUTO_ADJ_DIG AUTO_ADJ_DIG AUTO_ADJ_ECC Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) OXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) OXE0 CHIP_ID Return CHIP_REV: content identical to register REV OXFF	A8x0	ABZ_PRESET_STORE	Identical to ABZ_PRESET, additionally store the containing bank 0x4 to EEPROM.			
GPIO_OUT0_SET1 Set GPIO_OUT(0) to 1 Ox92 GPIO_OUT1_SET0 Set GPIO_OUT(1) to 0 Ox93 GPIO_OUT1_SET1 Set GPIO_OUT(1) to 1 OxA0 RPL_SET_NA Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM OxA1 RPL_SET_RO Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM OxA2 RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT OxB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OxB1 AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. OxB2 AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OxB3 AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. OxC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) OxC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) OxE0 CHIP_ID Return CHIP_REV: content identical to register REV OxFF	0x8B	UVW_PRESET_STORE	Identical to UVW_PRESET, additionally store the containing bank 0x5 to EEPROM.			
GPIO_OUT1_SET0 Set GPIO_OUT(1) to 0 Set GPIO_OUT(1) to 1 Set GPIO_OUT(1) to 1 Set GPIO_OUT(1) to 1 Set GPIO_OUT(1) to 1 Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM OXA2 RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT OXB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OXB1 AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. OXB2 AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) OXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) OXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0X01 CHIP_REV Return CHIP_REV: content identical to register REV OXFF	0x90	GPIO_OUT0_SET0	Set GPIO_OUT(0) to 0			
GPIO_OUT1_SET1 Set GPIO_OUT(1) to 1 Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM OXA2 RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT OXB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OXB1 AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. OXB2 AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OXC1 FORCE_BISS Switch BisS/SSI-Interface to BisS (sets SSI_EN = 0) OXC2 FORCE_SSI Switch BisS/SSI-Interface to SSI (sets SSI_EN = 1) OXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0X01 CHIP_REV Return CHIP_REV: content identical to register REV OXFF <a href="https://www.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.norm.nih.gov.nih.g</td><td>0x91</td><td>GPIO_OUT0_SET1</td><td>Set GPIO_OUT(0) to 1</td></tr><tr><td>Set the register-protection-level of the active bank (*) to no-access. Call command CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM RPL_SET_RO Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT DXBO AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. CXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) CXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) CXEO CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 Return CHIP_REV: content identical to register REV CXFF <a href=" https:="" td="" www.new.new.new.new.new.new.new.new.new.<=""><td>0x92</td><td>GPIO_OUT1_SET0</td><td>Set GPIO_OUT(1) to 0</td>	0x92	GPIO_OUT1_SET0	Set GPIO_OUT(1) to 0			
CONF_WRITE to store the restriction in EEPROM Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM OXA2 RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT OXB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OXB1 AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. OXB2 AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) OXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) OXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 CHIP_REV Return CHIP_REV: content identical to register REV OXFF <a "="" href="https://www.new.new.new.new.new.new.new.new.new.</td><td>0x93</td><td>GPIO_OUT1_SET1</td><td>Set GPIO_OUT(1) to 1</td></tr><tr><td>to store the restriction in EEPROM OXA2 RPL_GET Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT OXB0 AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. OXB1 AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. OXB2 AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. OXB3 AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. OXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) OXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) OXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 CHIP_REV Return-CHIP_REV: content identical to register REV OXFF NOP_FAIL> Return-code: last operation failed>	0xA0	RPL_SET_NA				
Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. AUTO_ADJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJUSTMENT D	0xA1	RPL_SET_RO	Set the register-protection-level of the active bank (*) to read-only. Call command CONF_WRITE to store the restriction in EEPROM			
AUTO_ADJ_ANA Automatic analog adjustment. Refer to chapter ADJUSTMENT ANALOG for details. AUTO_ADJ_DIG AUTO_READJ_DIG Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic digital re-adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJUSTMENT DIGITAL for details.	0xA2	RPL_GET	Get the register-protection-level status of the active bank (*). The result is stored in CMD_STAT			
Automatic digital adjustment (initial). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. Exclusion of the property of the prope	0xB0					
AUTO_READJ_DIG Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. AUTO_ADJ_ECC Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. CXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) CXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) CXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 CXE1 CHIP_REV Return CHIP_REV: content identical to register REV CXFF < NOP_FAIL> Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details. Automatic digital re-adjustment (in-field). Refer to chapter ADJUSTMENT DIGITAL for details.	0xB1					
Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details. DXC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) DXC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) DXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 DXE1 CHIP_REV Return CHIP_REV: content identical to register REV OXFF < NOP_FAIL> < Return-code: last operation failed>	0xB2					
DxC1 FORCE_BISS Switch BiSS/SSI-Interface to BiSS (sets SSI_EN = 0) DxC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) DxE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 DxE1 CHIP_REV Return CHIP_REV: content identical to register REV DxFF <nop_fail> <return-code: failed="" last="" operation=""></return-code:></nop_fail>	0xB3		Automatic eccentricity adjustment. Refer to chapter ADJUSTMENT ECCENTRICITY for details.			
DxC2 FORCE_SSI Switch BiSS/SSI-Interface to SSI (sets SSI_EN = 1) DxE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 DxE1 CHIP_REV Return CHIP_REV: content identical to register REV DxFF <nop_fail> <return-code: failed="" last="" operation=""></return-code:></nop_fail>	0xC1					
DXE0 CHIP_ID Return CHIP_ID: for iC-PZ: 0x01 DXE1 CHIP_REV Return CHIP_REV: content identical to register REV DXFF <nop_fail> <return-code: failed="" last="" operation=""></return-code:></nop_fail>	0xC2	_	_ ,			
DxE1 CHIP_REV Return CHIP_REV: content identical to register REV DxFF <nop_fail> <return-code: failed="" last="" operation=""></return-code:></nop_fail>	0xE0					
0xFF <nop_fail> <return-code: failed="" last="" operation=""></return-code:></nop_fail>	0xE1		_			
<u> </u>	0xFF					
		<u> </u>				

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 54/85

The CMD register is used to execute defined commands received via serial interface. As long as a command is queued or executed, CMD keeps the received command. Once the command has been completed successfully, CMD is set to 0x00. If an error occurs during command execution, CMD is set to 0xFF.

A separate CMD register is provided for each serial interface individually at address 0x77. It is forbidden to send a new command via the same interface while another command is still in queue or executed. Therefor, polling CMD after a command has been sent is essential. However, sending a single command via multiple interfaces is possible. If more than one command is received across different interfaces, execution is applied via first come first served scheduling so that delays may have to be taken into account.

For some commands useful information after execution, or in case an error occurred, are written to register CMD_STAT. A separate CMD_STAT register is provided for each serial interface individually at address 0x76.

CMD_STAT	(7:0) Addr. 0x76; bit 7:0	default: 0x00, read-only
Code	Value	
0x00	Last command succeeded	
others	Last command error-code. See	Table 68 for details

Table 67: Command Status

CMD_STAT	-					
CRC CHEC	CK					
n –	n = Amount of wrong bank CRCs. Refer to CRC_STAT for a detailed bitmask.					
CONF_WRI	TE, CONF_WRITE_ALL, PRESET_STORE (all)					
0x10	Slave acknowledge missing, resulting in timeout. Slave may not be available or misconfigured.					
0x11	Slave acknowledge missing after restart. Indicates a problem with the slave.					
0x12	SCL stuck at zero					
0x13	SDA stuck at zero					
0x14	Arbitration lost					
0x20	Unexpected event					
CONF_REA	D, CONF_READ_ALL					
0x100x20	In case of communication issues with the EEPROM, the error code is identical to CONF_WRITE.					
0x40	EEPROM communication ok, but at least one CRC is wrong. Refer to CRC_STAT for a detailed bitmask.					
RPL_SET_>	(
0x50	Illegal bank selected					
0x60	Change refused. Only lower privileges are allowed.					
RPL_GET						
0x00	No-access					
0x01	Read-only					
0x02	No restriction due to invalid CRC checksum					
0x03	No restriction					
0x50	Illegal bank selected					
PRESET (al	II), FORCE (all)					
0xFE	Command rejected as it would modify data in a write-protected bank					
AUTO_ADJ AUTO_ADJ	_ANA, AUTO_ADJ_DIG, AUTO_READJ_DIG, _ECC					
0x80	Timeout. Either speed too low or settings too high. Increase speed or decrease AC_COUNT to prevent timeout.					
AUTO_ADJ	_ECC (continuing)					
0x81	Rotation reversal detected					
0x82	Rotation too fast or position error occurred					
others						
0x00	No error code available					

Table 68: Command Status error-code

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 55/85

ABSOLUTE DATA INTERFACE (ADI)

Key features:

- · Absolute data interface (ADI) master
- Read revolution counter (RC), i.e., multiturn (MT) position data, from external slave(s)
- SSI protocol with synchronization (SB), error (EB) and warning bits (WB)
- Slave position data (RC + SB) as one word (synced) or parts of words (unsynced)
- · Access of raw slave position data

ADI key parameters					
Parameter	Value				
Clock frequency	150 kHz or 1500 kHz				
Frame repetition period	1.5 ms (normal operation) 0.2 ms (fast startup)				
Slave timeout	11.5 µs 40 µs				
RC data length per slave	1 32 bit (single-slave operation) 1 5 bit (multi-slave operation)				
Note	See also operating requirements for detailed timing information.				

Table 69: ADI key parameters

Figure 44: SSI protocol timing

Interface Enable

An internal revolution counter (RC) with a configurable absolute data interface (ADI) master is implemented to (periodically) read multiturn (MT) position data from an external sensor (slave) via the synchronous serial interface (SSI) protocol. Here, pin ACL is the clock output and pin ADA is the data input, respectively. The number of clock pulses depends on the configuration of the ADI master. The interface is enabled via bit ADI_CFG(7). If this bit is 0, only the internal revolution counter (RC) is active.

ADI_CFG(7)	Addr. 0x0, 0x0C; bit 7	default: 0				
Code	Function					
0	Interface disabled (ACL=const=1), only counting					
1	Interface enabled					
Note	In case the bit becomes 0 while the in active, the communication is still comdata is discarded.					

Table 70: ADI Enable

When the ADI master is enabled, the received position data is synchronized to the singleturn position to compensate for mechanical misalignment and SSI communication delays. The synchronized data is then compared to the internal revolution counter, which has been initialized during startup. In case of a position mismatch an error, DIAG(21), is reported and stored in the status register.

Single- and Multi-Slave Operation

Besides the classical single-slave operation, the ADI master also supports multi-slave operation, which is used to read in the raw (unsynchronized) position of multiple slave devices of a gear system and perform the synchronization among the slaves with the programmed synchronization bit length inside iC-PZ. Single- or multi-slave operation is configured via parameter ADI_MSO. In case a gear system with multiple slaves already provides a position that is synchronized among the slaves and only needs to be synchronized to the singleturn, ADI_MSO = 000 has to be used. That is because from the master's point of view, this system behaves like a single-slave system.

ADI_MSO(2	:0) Addr. 0x0, 0x0B; bit 7:5 default: 000						
Code	Number of ADI slaves						
000	1 (Single-slave operation)						
001	2						
110	7						
111	8						

Table 71: Multi-Slave Operation

The revolution counter (multiturn position) bit length per slave is implicitly configured via parameter MT_PDL, see Table 33. Here, MT_PDL always defines the total revolution counter bit length of the system. Hence, for single-slave operation (ADI MSO = 000) the revolution

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 56/85

counter bit length per slave exactly corresponds to the value of MT_PDL. For multi-slave operation (ADI_MSO ≠000) however, the value of MT_PDL corresponds to the revolution counter bit length per slave multiplied by the number of slaves. In other words, valid values for MT_PDL depend on ADI_MSO. The maximum revolution counter bit length per slave is limited to 5. The allowed configurations for all supported systems are given in the Table below. Multi-slave operation is visualized at the end of this chapter in Figure 46 and Figure 47.

ADI_MSO	Slaves	Valid MT_PDL	Resulting RC bit length per slave
000	1	132	132
001	2	2, 4, 6, 8, 10	1, 2, 3, 4, 5
010	3	3, 6, 9, 12, 15	1, 2, 3, 4, 5
011	4	4, 8, 12, 16, 20	1, 2, 3, 4, 5
100	5	5, 10, 15, 20, 25	1, 2, 3, 4, 5
101	6	6, 12, 18, 24, 30	1, 2, 3, 4, 5
110	7	7, 14, 21, 28	1, 2, 3, 4
111	8	8, 16, 24, 32	1, 2, 3, 4

Table 72: Revolution counter bit length per slave

Synchronization

The ADI master implements a ± 1 position data synchronization of two devices, i.e., the position of the so-called "sync-slave" is synchronized to the position of the so-called "sync-master". In a single-slave system there are only two devices: The singleturn device acts as the sync-master, while the multiturn device is the sync-slave. In a multi-slave (gear) system adjacent ADI slaves have to be synchronized as well: Here, the faster turning device acts as the sync-master, while the slower turning device is the sync-slave. The tolerable phase shift values in the following tables refer to a mechanical revolution of the sync-master device. Due to the ± 1 synchronization principle, the optimal mounting phase shift between sync-master and sync-slave corresponds to 0 °m (center of the tolerable phase shift).

The synchronization bit length per slave is configured via parameter ADI_SBL. For the synchronization to the singleturn parameter ADI_OS can be used to compensate for a non-ideal mounting phase shift by shifting the received slave position according to ADI_OS inside the master device. If the mounting phase shift is unknown, one can determine it by reading parameter ADI_SB and comparing it to 4 MSBs of the singleturn position.

ADI_SBL(2:	0) Addr. 0x0, 0x0A;	bit 2:0 default: 001	
Code	Synchronization bit length per slave	Tolerable phase shift	
Single-slav	e operation (ADI_MSO = 0	00) only.	
000	0	Sync. disabled	
Single- and	multi-slave operation		
001	1	± 90 °m	
010	2	\pm 135 $^{\circ}$ m	
011	3	± 157.5 °m	
100	4	\pm 168.75 °m	
others	invalid		
Note	Disabling the synchronization also disables the internal revolution counter, meaning the raw data received from the ADI slave can be accessed. This is only recommended for test or adjustment purposes. Increasing the revolution counter bit length in the ADI master by the number of synchronization bits of the slave grants access to the full, non-synchronized position data of the slave (RC + SB).		

Table 73: Synchronization Bit Length per Slave

ADI_OS(4:0) Addr. 0x0, 0x0A; bit 7:3 default: 00000
Code	Synchronization offset
00000	0°m
00001	11.25 °m
01110	157.5 °m
01111	168.75 °m
10000	-180 °m
10001	-168.75 °m
11110	-22.5 °m
11111	-11.25 °m
Note	The synchronization offset is only applied to the synchronization of revolution counter to singleturn and not for the synchronization among slaves in multi-slave operation.

Table 74: Synchronization Offset (electrical alignment slave vs. master)

ADI_SB(3:0)	Addr. 0x5E;	bit 3:0	read-only
Output of up to 4 slave (left aligned	•	bits, as r	received from the ADI

Table 75: Received Synchronization Bits (read-only)

Error and Warning Bits

For diagnostic purposes error and warning bits can be transmitted in the protocol besides the position data. The error bit length per slave is defined by parameter ADI_EBL, the polarity can be configured by parameter ADI_EBP. For multi-slave systems there are two different transmission schemes for the diagnostic bits, which are illustrated in Figure 46.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 57/85

ADI_EBL(3	:0) Addr. 0x0, 0x0B; bit 3:0 default: 0001
Code	Error bit length per slave
Single-slav	e operation (ADI_MSO = 000)
0000	0
0001	1
0111	7
1000	8
others	invalid
Multi-slave	operation (ADI_MSO ≠000)
0000	0
0001	1 (individual diagnostic bit transmission)
0010	1 (gathered diagnostic bit transmission)
others	invalid
Note	See Figure 46 for the difference between individual and gathered diagnostic bit transmission.

Table 76: Error Bit Length per Slave

ADI_EBP	Addr. 0x0, 0x0B; bit 4	default: 0
Code	Function	
0	Slave diagnostic bit polarity active low	
1	Slave diagnostic bit polarity active high	

Table 77: Diagnostic Bit Polarity

ADI_CFG(5	Addr. 0x0, 0x0C; bit 5 default: 0	
Code	Function	
0	No warning bit(s) in ADI data stream	
1	Evaluate warning bit(s) in ADI data stream	
Note	Note For ADI_CFG(5) = 1 the warning bit length corresponds to the configured error bit length.	

Table 78: Usage of Warning Bit(s)

Interface Settings

Register ADI_CFG contains additional important ADI configuration parameters, as described in the following tables.

ADI_CFG(8)	Addr. 0x0, 0x0D; bit 0 default: 0	
Code	Function	
0	Slave position data in binary code	
1	Slave position data in gray code	
Note	The data format refers to the position data only (revolution counter + synchronization bits) and not the diagnostic bits.	

Table 79: ADI Slave Position Data Format

ADI_CFG(6)	Addr. 0x0, 0x0C;	bit 6	default: 0
Code	Function	Typ. frequency	
0	Slow ACL mode	150 kHz	
1	Fast ACL mode	1500 kHz	<u>z</u>

Table 80: ACL Clock Operating Mode

ADI_CFG(4)	Addr. 0x0, 0x0C; bit 4 default: 1	
Code	Function	
0	No cyclic counter verification (ACL=const=1)	
1	Cyclic counter verification vs. external data	

Table 81: Cyclic Counter Verification vs. external data

ADI_CFG(3)	Addr. 0x0, 0x0C; bit	3 default: 0
Code	Function	
0	Always keep internal counter	
1	Always load internal counter	with external data
Note	In case of ADI_CFG(3) = 1 the internal counter is always loaded with the available external data, but there is one exception: For ADI_CFG(2) = 1 the internal counter is kept in case of a single error event (ADA stuck-at, counter verification or error bit set).	

Table 82: External Data Priority

ADI_CFG(2)	Addr. 0x0, 0x0C; bit 2 default: 0	
Code	Function	
0	Report single error events immediately	
1	Ignore single error events and keep internal counter value	
Note	In case of ADI_CFG(2) = 1, errors are only reported in case of two consecutive erroneous communications.	

Table 83: Double Error Messaging

ADI_CFG(1)) Addr. 0x0, 0x0C; bit 1	default: 0
Code	Function	
0	Default frame repetition period durin (1500 µs)	g startup
1	Modified frame repetition period duri (200 μs)	ng startup
Note	For fast slaves a low frame repetition period during startup can be used to speed up the startup phase. It is recommended to configure the fast ACL mode here. Otherwise, the SSI communication might already exceed the target frame repetition period of 200 µs. In this case the actual frame repetition period is extended by iC-PZ to ensure a minimum waiting time of 50 µs between ACL pulse trains.	

Table 84: Fast Startup Enable

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 58/85

Startup

During system startup (after reset via power-cycle, NRES pin low or reset command) and if the interface is enabled (ADI_CFG(7) = 1), the ADI master cyclically tries to read data from the ADI slave(s). In case the slave(s) is(are) not yet ready (indicated by ADA = const = 1 or ADA = const = 0, which is recommended), the ADI master will stay in the startup phase and wait for the slave(s). If the ADI slave(s) does(do) not become ready, the startup phase is aborted after 100 ms and an error is reported. Note: The ADI master ensures a minimum idle time of 50 μ s, before it initiates the first communication at the beginning of the startup phase.

Once valid communication is established with the ADI slave(s), the startup phase is not immediately left. To successfully finish the startup phase, two consecutive communications have to be valid (no protocol error), the internal counter versus external data verification has to be ok and no error bit in the protocol must be set. In case all conditions are met, the startup phase is left and the interface continues with normal operation.

Besides the system startup, the ADI master's startup phase can also be triggered by disabling and re-enabling the interface via ADI_CFG(7) or by executing command ADI_RESET. Note that in this case there is

no termination criterion, i.e., the master will stay in the startup phase forever, if no valid communication can be established with the slave(s). The startup phase has in this case successfully finished, once DIAG(21) = 0 (Int./ext. RC position comparison) after clearing the status register.

The frame repetition period during startup can be lowered to 200 µs via ADI_CFG(1). For fast slaves this might be useful to speed up the startup phase.

Diagnosis

In addition to the synchronized position verification, DIAG(21), the received error and warning bits, DIAG(19:16) and DIAG(20), the ADI master also checks the following SSI protocol conditions:

- ADA line is 1, right before the first ACL falling edge (start bit) → Verifies that the last frame finished correctly and detects ADA stuck-at-zero, DIAG(22).
- ADA line is 0, right after the last ACL rising edge (stop bit) → Verifies the correct timeout and protocol length and detects ADA stuck-at-one, DIAG(23).

Figure 45: Single-slave operation – exemplary SSI protocol format

Figure 46: Multi-slave operation – exemplary SSI protocol formats

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 59/85

Figure 47: Multi-slave operation – application example with 4 slaves

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 60/85

I2C MASTER

The implemented I2C master is connected to at least one I2C slave, the EEPROM. Besides, it is possible to communicate with up to four additional slaves connected to the I2C master. The I2C communication can be initiated via BiSS or SPI.

The applied I2C clock frequency is selected via I2C_F_x. Up to 100 kHz and up to 400 kHz are supported. The individual I2C slave address has to be specified in I2C_DEV_ID_x. Only 7-bit addresses are supported. Additionally, the memory architecture of the individual I2C slave has to be defined via I2C_T_x. 8-bit or 16-bit devices are supported.

Communication with 8-bit devices

When using BiSS to initiate the I2C communication, the general procedure is quite similar to common on-chip register access. However, the I2C transmission takes additional processing time that has to be taken into account. No register accesses are allowed until the requested data has been fully received.

When using SPI to initiate the I2C communication, specific opcodes are available for that purpose. Refer to SPI SLAVE on page 48 for details.

Communication with 16-bit devices

The procedure described for 8-bit devices is still applicable. However, transferred data is buffered in I2C_DATA_x(15:0). When reading, the received byte must be ignored. Data will be available in I2C_DATA_x(15:0) after transmission has been completed. When writing, data to be transmitted has to be written to I2C_DATA_x(15:0) first. Then the appropriate procedures have to be executed, ignoring the data that is sent.

See Figures 48 and 49 for details of the supported I2C transmission modes.

Note: Before initiating any I2C communication, the active bank BSEL has to be set according to the address space used by the I2C slave. Refer to MEMORY ORGANIZATION on page 22 for details.

I2C_F_0	Addr. 0xA, 0x04; bit 0	default: 0			
I2C_F_1	Addr. 0xA, 0x05; bit 0	default: 0			
I2C_F_2	Addr. 0xA, 0x06; bit 0	default: 0			
I2C_F_3	Addr. 0xA, 0x07; bit 0	default: 0			
Code	Description				
0	Up to 100 kHz I2C frequency				
1	Up to 400 kHz I2C frequency				

Table 85: I2C Frequency

I2C_DEV_I	0_0	Addr. 0xA, 0x00;	bit 7:0	default: 0x00		
I2C_DEV_I)_1	Addr. 0xA, 0x01;	bit 7:0	default: 0x00		
I2C_DEV_I)_2	Addr. 0xA, 0x02;	bit 7:0	default: 0x00		
I2C_DEV_I)_3	Addr. 0xA, 0x03;	bit 7:0	default: 0x00		
Code	Desc	Description				
0x800x9F, 0xB00xFF others	available 7-bit I2C device ID, left-aligned, LSB is not used forbidden					

Table 86: I2C Device ID

I2C_T_0	Addr. 0xA, 0x04; bit 7:1 default: 0x00				
I2C_T_1	Addr. 0xA, 0x05; bit 7:1 default: 0x00				
I2C_T_2	Addr. 0xA, 0x06; bit 7:1 default: 0x00				
I2C_T_3	Addr. 0xA, 0x07; bit 7:1 default: 0x00				
Code	Description				
0x00	8-bit access (devices like EEPROMs)				
0x01	16-bit access (devices like temperature sensors)				

Table 87: I2C Slave Architecture Type

I2C_DATA_0(7:0)		Addr. 0x60;	bit 7:0	default: 0x00	
I2C_DATA_0(15:8)		Addr. 0x61;	bit 7:0	default: 0x00	
I2C_DATA_1(7:0)		Addr. 0x62;	bit 7:0	default: 0x00	
I2C_DATA_1(15:8)		Addr. 0x63;	bit 7:0	default: 0x00	
I2C_DATA_2(7:0)		Addr. 0x64;	bit 7:0	default: 0x00	
12C_DATA_2(15:8)	Addr. 0x65;	bit 7:0	default: 0x00	
I2C_DATA_3(7:0)	Addr. 0x66;	bit 7:0	default: 0x00	
I2C_DATA_3(15:8)	Addr. 0x67;	bit 7:0	default: 0x00	
Value	Description				
	I2C data for communication with 16-bit devices (I2C_T_x = 0x01)				

Table 88: I2C Data

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 61/85

Figure 48: I2C 8-bit data protocol

Figure 49: I2C 16-bit data protocol

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 62/85

GPIO

Two General Purpose Input/Output (GPIO) pins are provided by iC-PZ. Via GPIOx_CFG(1:0) each pin can be configured as input, push-pull output or open-drain in-out versus GNDIO or VDDIO. A graphical overview of the GPIO signal path is shown in Figure 50.

GPIO0_CFG(1:0)		Addr. 0x9, 0x08;	bit 1:0	default: 01	
GPIO1_CFG(1:0)		Addr. 0x9, 0x08;	bit 5:4	default: 00	
Code	Description				
00	Input only with pull-up				
01	Open-drain (hard 0) and input with pull-up				
10	Open-drain (hard 1) and input with pull-down				
11	Push-pull (and input)				

Table 89: GPIO Output Pad Configuration

GPIO as Input

When configured as input, the current state of GPIO(x) can be read from GPIO_IN(x). Additionally, an input can be used to trigger DIAG(26) or DIAG(27), which is useful to detect an error/warning from an external source. In GPIOx_DIAG the polarity triggering the error/warning is defined.

GPIO_IN(1:	O) Addr. 0x4D; bit 3:2	default: n/a	
Bit	Description		
1:0	Reads the current state of pins GPIO(1:0). The parameter is read-only		

Table 90: GPIO Input State

GPIO as Output

When configured as output, the source controlling the logical pin state is selected via GPIOx_SEL. The output can either be controlled through setting the corresponding bit of GPIO_OUT(1:0), or using the state of specific events logged in DIAG. The bitmask GPIOx_M is used to select or deselect events for that purpose. In GPIOx_DIAG the polarity indicating the error/warning is defined.

GPIO0_SEL	. Addr. 0x9, 0x08; bit 3 default: 0			
GPIO1_SEL	. Addr. 0x9, 0x08; bit 7 default: 0			
Code	Description			
0	Pin GPIO(x) is driven by output of DIAG masked with GPIOx_M			
1	Pin GPIO(x) is driven by register GPIO_OUT(x)			

Table 91: GPIO Output Selection

GPIO_OUT((1:0)	Addr. 0x4D;	bit 1:0	default: 00
Bit	Desc	ription		
1:0	GPIC		written t	x), if selected by o directly, or command ent

Table 92: GPIO Output State

GPIO0_DIA	G Addr. 0x9, 0x08; bit 2	default: 0		
GPIO1_DIA	G Addr. 0x9, 0x08; bit 6	default: 0		
Code	Description			
0	For input: 0 is interpreted as error	/warning in DIAG		
	For output: error is output as 0			
1	For input: 1 is interpreted as error/warning in DIAG			
	For output: error is output as 1			

Table 93: GPIO Diagnosis Polarity

GPIO0_M(7	:0)	Addr. 0x9, 0x00;	bit 7:0	default:
GPIO0_M(1	5:8)	Addr. 0x9, 0x01;	bit 7:0	0x01000000
GPIO0_M(2	3:16)	Addr. 0x9, 0x02;	bit 7:0	
GPIO0_M(31:24)		Addr. 0x9, 0x03;	bit 7:0	
GPIO1_M(7	:0)	Addr. 0x9, 0x04;	bit 7:0	default:
GPIO1_M(15:8)		Addr. 0x9, 0x05;	bit 7:0	0x00000000
GPIO1_M(23:16)		Addr. 0x9, 0x06;	bit 7:0	
GPIO1_M(31:24)		Addr. 0x9, 0x07;	bit 7:0	
Bit	Description			
31:0	Selected bits of DIAG to be forwarded			

Table 94: GPIO(0/1) Bit Mask

Note: By default GPIO(0) is configured as open-drain output. After system startup has been completed successfully, GPIO(0) is set from hard 0 to pull-up 1.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 63/85

Figure 50: GPIO datapath overview

TEMPERATURE SENSOR

An on-chip temperature sensor with a resolution of 0.1 °C is integrated in iC-PZ. The temperature value is stored in TEMP. Refer to ELECTRICAL CHARACTERISTICS T01 for the temperature range covered.

TEMP(7:0)	Addr. 0x4E;	bit 7:0	read-only
TEMP(15:8)	Addr. 0x4F;	bit 7:0	read-only
Code	Value		
Signed: 2K		value ₁0°C	
0xFE70	-40.0 °C		
0xFFFF	- 0.1 °C		
0x0000	0.0 °C		
0x0001	0.1 °C		
0x0578	140.0 °C		

Table 95: Temperature

TEMP is latched by reading its lowest address 0x4E so that all corresponding register values are related to the same request. Reading this parameter from lowest to highest address is mandatory.

Additionally, two temperature limits can be set using TEMP_L_x. The limit uses the same coding as TEMP,

but the upper four bits are omitted. TEMP_LT_x defines whether an upper or lower limit is set. If the temperature value is outside those limits at any time, an error/warning is reported in DIAG.

TEMP_L_1(TEMP_L_1(7:0)		0xD,0x00;	bit 7:0	default: 0x578
TEMP_L_1(11:8)	Addr.	0xD,0x01;	bit 3:0	
TEMP_L_2(7:0)	Addr.	0xD,0x02;	bit 7:0	default: 0xE70
TEMP_L_2(11:8)	Addr.	0xD,0x03;	bit 3:0	
Code	Value				
	Codin	g equiv	alent to TE	MP, omit	ting bits 15:12
0xE70	-40.0 °	,C			
0xFFF	- 0.1 °C				
0x000	0.0 °C				
0x001	0.1 °C				
0x578	140.0 °C				

Table 96: Temperature Limit 1/2

TEMP_LT_1	Addr. 0xD, 0x04; bit 0 default: 0
TEMP_LT_2	Addr. 0xD, 0x04; bit 1 default: 1
Code	Value
0	Upper limit: will trigger diagnosis error/warning if temperature exceeds limit.
1	Lower limit: will trigger diagnosis error/warning if temperature falls below limit.

Table 97: Temperature Limit Type 1/2

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 64/85

DIAGNOSIS

An extensive diagnosis and error/warning reporting mechanism is provided by iC-PZ. A lot of parameters are monitored and recapped in the DIAG registers. They are caught and stored, even if occurring as a single event for a very short period of time. By masking specific bits in DIAG, the errors and warnings being reported in ERR and WARN can be selected individually.

For each serial interface an individual error/warning configuration can be defined. Refer to BiSS SLAVE, SSI SLAVE, and SPI SLAVE for details. An overview of the diagnosis datapath is shown in Figure 51.

Writing to DIAG will set the individually addressed bits. This can be used for testing purposes.

Figure 51: Diagnosis datapath overview

iC-PZ Series HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 65/85

DIAG(7:0)		Addr. 0x68; bit 7:0 default:
DIAG(15:8)		Addr. 0x69; bit 7:0 0x00000000
DIAG(23:16	5)	Addr. 0x6A; bit 7:0
DIAG(31:24	!)	Addr. 0x6B; bit 7:0
Bit	Description	Error Condition
Analog blo	cks:	
0	Digital photo-amplifiers in saturation	Illumination of at least one of the digital photo-diodes is too high, digital photocurrent-amplifier saturates
1	LED current low	LED current smaller than 50% of the nominal current of square or sum control
2	Temperature sensor not in steady state	Temperature sensor has not yet found the actual chip temperature
3	VDDIO voltage low	Voltage at VDDIO below threshold set by VDDIOSEL as defined in Elec. Char. P05
4	Interpolator error	Sinusoidal (analog) interpolator position is not within ±22.5°e of the digital interpolator position
6	ABZ-Interface not ready	The ABZ-Interface has not yet reached the current position. Relevant at startup only. This error is not latched and automatically cleared when the position is reached.
7	UVW-Interface not ready	The UVW-Interface has not yet reached the current position. Relevant at startup only. This error is not latched and automatically cleared when the position is reached.
Digital bloc	:ks:	
8	Position filter: alpha overflow	Acceleration register alpha exceeds an internally defined limit resulting in new filter startup $(\approx 256\mu s)$
9	Position filter: omega overflow	Velocity register omega exceeds an internally defined limit resulting in new filter startup ($\approx\!256\mu s)$
10	Digital photo-amplifiers not in steady state	Digital photo-amplifiers did not yet startup successfully
11	PRC synchronization failed	PRC mismatching tolerance set in RAN_TOL exceeded. Most likely the PRC track was not sampled correctly. See chapter ADJUSTMENT DIGITAL for details on setting up the sampling.
12	Analog adjustment parameter at boundary value	Parameter COS_OFFS, SIN_OFFS, SC_GAINS or SC_PHASES reached minimum or maximum value, or dynamic part of one of these registers is unexpected high (±12.5% of the range)
13	Digital adjustment parameter at boundary value	Parameter Al_PHASES or Al_SCALES reached minimum or maximum value, or dynamic part of one of these registers is unexpected high (±12.5% of the range)
14	Temperature limit 1	Chip temperature exceeds / falls below temperature limit defined by TEMP_L_1 and TEMP_LT_1
15	Temperature limit 2	Chip temperature exceeds / falls below temperature limit defined by TEMP_L_2 and TEMP_LT_2
Absolute da	ata interface (ADI):	
19:16	Multiturn error bit(s) read from slave(s)	Mapping of multiturn error bit(s) as set and transmitted by multiturn slave(s). Error bits of slaves 02 are individually mapped to diagnosis bits 1618, while error bits of slaves 37 are reduced (OR-operation) to diagnosis bit 19.
20	Multiturn warning bit(s) read from slave(s)	Mapping of multiturn warning bit(s) as set and transmitted by multiturn slave(s). Warning bits of all slaves are reduced (OR-operation) to this single diagnosis bit
21	Multiturn position comparison failed	Mismatch of internally counted revolution counter (RC) with external (synchronized) RC from multiturn interface
22	Pin ADA stuck-at-0	SSI data line pin (ADA) is stuck-at-0 $ ightarrow$ No communication is possible
23	Pin ADA stuck-at-1	SSI data line pin (ADA) is stuck-at-1 $ ightarrow$ No communication is possible
Digital cont	trol:	
24	System startup in progress	System is starting up and not yet ready
25	EEPROM CRC error	At least one CRC in the EEPROM is invalid (or EEPROM communication failed)
26	Pin GPIO(0) as error input	Pin GPIO(0) is used as external error input. Error is reported if GPIO(0) ≠ GPIO0_DIAG
27	Pin GPIO(1) as error input	Pin GPIO(1) is used as external error input. Error is reported if GPIO(1) ≠ GPIO1_DIAG
28	System startup aborted due to timeout	Timeout reached while waiting for functional block to become ready at system startup
31:29	User available	User-defined diagnosis register bits. Can be set and reset by any serial interface.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 66/85

Errors & Warnings

Individual error and warning bits can be cleared by writing the corresponding bits to ERR or WARN. If an error is cleared, the warning is also affected and the other way around. All error and warning bits are cleared by either writing 0xFFFFFFFF to ERR or WARN or executing command SCLEAR. Clearing errors or warnings affects all interfaces at the same time.

Note: The EEPROM CRC error bit in DIAG(25) cannot be cleared externally. For that purpose either one of the commands CONF_READ and CONF_READ_ALL has to be executed or a power-on reset has to be performed.

ERR(7:0)	Addr. 0x6C;	bit 7:0	default:
ERR(15:8)	Addr. 0x6D;	bit 7:0	0x00000000
ERR(23:16)	Addr. 0x6E;	bit 7:0	
ERR(31:24)	Addr. 0x6F;	bit 7:0	
Bit	Description		
31:0	Errors as indicated to BISS_EM(31:0) / SF reads its individually	PÍ_EM(31	

Table 99: Error

WARN(7:0)	Addr. 0x70;	bit 7:0	default:
WARN(15:8	Addr. 0x71;	bit 7:0	0x00000000
WARN(23:1	6) Addr. 0x72;	bit 7:0	
WARN(31:2	4) Addr. 0x73;	bit 7:0	
Bit	Description		
31:0	Warnings as indicated by DIAG(31:0) and masked with BISS_EM(31:0) / SPI_EM(31:0). Each interface reads its individually selected warnings only.		

Table 100: Warning

CRC Status

Invalid CRC values of a bank are marked as 1 in CRC_STAT. After startup, CRC_STAT is automatically updated. Banks that could not be read from the EEP-ROM due to communication problems, are marked as invalid as well. CRC_STAT = 0x0000 indicates that all CRC values are valid. By using the command CRC_CALC, correct CRC values for all banks are calculated and marked as valid in CRC_STAT.

Example:

CRC_STAT = 0b0000000000001001 indicates invalid CRC values for bank 0x0 and bank 0x3.

CRC_STAT	(7:0) Addr. 0x74; bit 7	':0 default: 0xFFFF,
CRC_STAT	15:8) Addr. 0x75; bit 7	:0 read-only
Bit	Value	
0:14	Register banks 0x0 to 0xE	
15	EEPROM protection CR	C

Table 101: CRC Status

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 67/85

SYSTEM CONFIGURATION

Revision & Identification

ID, REV, and SYS are defined by iC-Haus and are read-only.

	Individual chip ident	ification r	number from iC-Haus
ID(31:24)	Addr. 0x4B;	bit 7:0	read-only
ID(23:16)	Addr. 0x4A;	bit 7:0	read-only
ID(15:8)	Addr. 0x49;	bit 7:0	read-only
ID(7:0)	Addr. 0x48;	bit 7:0	read-only

Table 102: ID

REV(3:0)	Addr. 0x4C; bit 3:0	read-only
Code	Value	
0x0	iC-PZxxxx_0	
0x1	iC-PZxxxx_Z	
0x2	iC-PZxxxx_Y	
0x3	iC-PZxxxx_X	

Table 103: Chip Revision

SYS(3:0)	Addr. 0x4C; bit 7:4 read-only
Code	Value
0x7	7-bit system, native for iC-PZ0974 rotary Ø9 mm
0x8	8-bit system, native for iC-PZ2656 rotary Ø26 mm
0xF	15-bit system, native for iC-PZ205 linear with length up to 6.71m

Table 104: Chip System

System Definition

SYS eff = SYS OVR

If the resolution provided by the system is not equal to SYS, in case the FLEXCODE® feature is used, SYS_OVR has to be set accordingly. The effective chip system SYS_eff is defined as:

SYS_eff = SYS	for $SYS_OVR = 0$

SYS_OVR(3	3:0) Addr. 0x0, 0x07; bit 7:4	0x0
Code	Value	
0x0	no override: SYS_eff equals system-setting S	SYS

for SYS OVR ≠0

0x0 no override: SYS_eff equals system-setting SYS others override: SYS_eff equals SYS_OVR iC-PZ0974: 0x7 iC-PZ2656: 0x7 ... 0x9 iC-PZ205: 0x9 ... 0xF

Table 105: Chip System Override

If SYS_OVR is adapted, that change has to be written to the EEPROM and the system must then be rebooted.

In case discs/scales with inverted and/or flipped codes are used, CD_INV and CD_FLIP can adjust iC-PZ accordingly. Both corrections can be used at the same time.

CD_INV	Addr. 0x0, 0x07; bit 0	default: 0
Code	Value	
0	Code on disc/scale not inverted (default)	
1	Code on disc/scale inverted (reflective/non-reflective)	

Table 106: Inverted Code Correction

CD_FLIP	Addr. 0x0, 0x07; bit 1 default: 0
Code	Value
0	Code on disc/scale not flipped (default)
1	Code on disc/scale flipped (mirrored left-to-right)

Table 107: Flipped Code Correction

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 68/85

BiSS Profile & Identifier

EDS_BANK, BISS_PROFILE_ID, SERIAL, DEV_ID, and MFG_ID are available as editable parameters in bank 0xE and as read-only registers in the direct access registers 0x40..0x7F. Both are mapped to the same internal memory, so that their content is identical. After editing the parameters in bank 0xE, it can be good practice to protect the registers from being accessed by using command RPL_SET_RO (read-only) or RPL_SET_NA (no access). As last step, the bank then has to be written to the external EEPROM sending command CONF_WRITE.

EDS_BANK(7	7:0)	Addr. 0x41; bit 7:0	read-only
EDS_BANK_X(7:0)		Addr. 0xE, 0x01; bit 7:0	
Value	Pointe	er to BiSS EDS bank	

Table 108: BiSS EDS Bank

BISS_PROFILE_ID)_1(7:0)	Addr. 0x42; bit 7:0	read-only
BISS_PROFILE_ID_0(7:0)		Addr. 0x43; bit 7:0	read-only
BISS_PROFILE_ID_1_X(7:0)		Addr. 0xE, 0x02; bit 7:0	
BISS_PROFILE_ID_0_X(7:0)		Addr. 0xE, 0x03; bit 7:0	
Value	BiSS	orofile ID	

Table 109: BiSS Profile ID

SERIAL_3(7:0)	Addr. 0x44; bit 7:0	read-only
SERIAL_2(7:0)	Addr. 0x45; bit 7:0	read-only
SERIAL_1(7:0)	Addr. 0x46; bit 7:0	read-only
SERIAL_0(7:0)	Addr. 0x47; bit 7:0	read-only
SERIAL_3_X(7	:0) Addr. 0xE, 0x04; bit 7:0	
SERIAL_2_X(7	:0) Addr. 0xE, 0x05; bit 7:0	
SERIAL_1_X(7	:0) Addr. 0xE, 0x06; bit 7:0	
SERIAL_0_X(7	:0) Addr. 0xE, 0x07; bit 7:0	
Value	Module manufacturer serial number	

Table 110: Serial Number

DEV_ID_5(7:0	0)	Addr. 0x78; bit 7:0	read-only
DEV_ID_4(7:0	0)	Addr. 0x79; bit 7:0	read-only
DEV_ID_3(7:0	0)	Addr. 0x7A; bit 7:0	read-only
DEV_ID_2(7:0	0)	Addr. 0x7B; bit 7:0	read-only
DEV_ID_1(7:0	0)	Addr. 0x7C; bit 7:0	read-only
DEV_ID_0(7:0	0)	Addr. 0x7D; bit 7:0	read-only
DEV_ID_5_X((7:0)	Addr. 0xE,0x08; bit 7:0	0x50 ('P')
DEV_ID_4_X((7:0)	Addr. 0xE,0x09; bit 7:0	0x5A ('Z')
DEV_ID_3_X((7:0)	Addr. 0xE,0x0A; bit 7:0	SYS & REV
DEV_ID_2_X((7:0)	Addr. 0xE,0x0B; bit 7:0	BISS_ST_DL
DEV_ID_1_X(7:0)		Addr. 0xE,0x0C; bit 7:0	BISS_MT_DL
DEV_ID_0_X((7:0)	Addr. 0xE,0x0D; bit 7:0	CRC16 & ENSOL
			& CRCS
Value	BiSS	device ID	

Table 111: BiSS Device ID

MFG_ID_1(7:0)		Addr. 0x7E; bit 7:0	read-only		
MFG_ID_0(7:0)		Addr. 0x7F; bit 7:0	read-only		
MFG_ID_1_X(7:0)		Addr. 0xE,0x0E; bit 7:0	0x69 ('i')		
MFG_ID_0_X(7:0)		Addr. 0xE,0x0F; bit 7:0	0x43 ('C')		
Value	BiSS	BiSS manufacturer ID			

Table 112: BiSS Manufacturer ID

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 69/85

FLEXCODE®

With the FlexCode[®] feature the available iC-PZ devices can be used to realize rotative absolute encoder systems with arbitrary code disc diameters:

Device	Covered code disc diameters				
iC-PZ2656	16.2 mm 44.6 mm				
iC-PZ205	44.6 mm up to linear 6.71 m				

Table 113: FlexCode® supported disc diameters

The FlexCode® system is set up with FCL and FCS. Additionally, overriding the chip system via SYS_OVR might be necessary. Two examples of FlexCode®-systems are given in Table 116. Parameters and settings for specific code disc diameters are provided at support@ichaus.de.

FCL(7:0)	Addr. 0x8, 0x00; bit 7:0	default:				
FCL(14:8)	Addr. 0x8, 0x01; bit 6:0	0x0000				
Code	Value					
0x0000	FlexCode [®] disabled					
others	See Table 116 for example					

Table 114: FlexCode® Length

FCS(7:0)	Addr. 0x8, 0x02;	bit 7:0	default:			
FCS(14:8)	Addr. 0x8, 0x03;	bit 6:0	0x0000			
See Table 116 for example						

Table 115: FlexCode® Identifier

Code disc	Device	SYS_OVR	FCL	FCS		
PZ08S, Ø 44 mm	iC-PZ2656	9	446	216		
Other FlexCode®-systems on request.						

Table 116: FlexCode®-system example

Independent of the number of increments on the code disc, the digital interfaces BiSS, SSI, and SPI always output data as fully coded powers of 2, i.e., the binary singleturn value range is defined by SYS_eff bits for the PRC track (MSBs) plus the interpolated bits (LSBs).

Example:

iC-PZ2656 with PZ08S is a FlexCode[®]-system with SYS_eff = 9 and FCL = 446 (number of increments on the code disc). During a full mechanical revolution of 360°m, the 9 MSBs of the output singleturn position take values between 0 and 511.

Specification Modifications for FlexCode®

In a FlexCode®-system, the hysteresis values given in °e in Table 22 change according to

$$\frac{\text{FCL}}{2\text{SYS_eff}} \cdot \frac{2 \cdot \text{ABZ_HYS}}{2^{14}} \cdot 360^{\circ} \text{e}$$

The maximum rotary speed defined in Table 145 is

$$RPM \le \frac{14.4 \cdot 10^6}{FCL}$$
.

Minimum speed and time required for analog and digital autocalibration change as follows:

analog (see page 73):

$$\begin{split} n_{min} &= \frac{2^{AC}_COUNT}{FCL} \cdot 1.25\frac{1}{s} \\ t_{rot} &\approx \frac{2^{AC}_COUNT}{FCL} \cdot \frac{AC_SEL1-AC_SEL2}{n} \end{split}$$

digital (see page 75):

$$\begin{split} n_{min} &= \frac{2^{AC_COUNT}}{FCL} \cdot 1.5\frac{1}{s} \\ t_{rot} &\approx \frac{2^{AC_COUNT}}{FCL} \cdot \frac{AC_SEL1 - AC_SEL2}{\frac{3}{4} \cdot n} \end{split}$$

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 70/85

ADJUSTMENT ANALOG

To achieve best interpolation results, the signal quality can be optimized on-chip via analog adjustment. Typical errors such as offset between the positive and the negative phases of cosine and sine, amplitude mismatch between cosine and sine, and incorrect phase shift between cosine and sine can be compensated. Good practice is to use the autocalibrations on command, however entering parameters manually is possible. In general, the raw signals to be adjusted can be described as

 $\begin{aligned} & \text{COS} = \text{PCOS} - \text{NCOS} \\ & = \text{AMP_COS} \cdot \sin(\omega \text{t+PH_COS}) + \text{OS_COS} \\ & \text{SIN} = \text{PSIN} - \text{NSIN} \\ & = \text{AMP_SIN} \cdot \sin(\omega \text{t+PH_SIN}) + \text{OS_SIN} \end{aligned}$

Offset

The cosine signals before and after the offset has been adjusted are shown in Figure 52. By setting COS_OFF to a positive value, the DC value of the differential signal is increased. The applied offset is independent of the actual signal amplitudes. For the sine signals this is applied identically.

 $COS = cos(\omega t) + OS_COS + COROS(COS)$

To compensate the offset, a DC value COROS(COS) has to be added in the opposite direction of the measured offset OS_COS:

$$COROS(COS) = -OS COS$$

COS_OFF(1	OS_OFF(1:0)		0x1, 0	x00;	bit 7:6	default: 0x000
COS_OFF(9	Addr.	0x1, 0	x01;	bit 7:0		
SIN_OFF(1:	0)	Addr.	0x1, 0	x02;	bit 7:6	default: 0x000
SIN_OFF(9:	2)	Addr.	0x1, 0	x03;	bit 7:0	
Code	COROS(COS) COROS(SIN)					
Signed			COS	OF	F · 0.235	mV
(2K)				_	F · 0.235	
0x000	0.000	mV				
0x001	0.235 mV					
0x002	0.470 mV					
0x1FE	119.765 mV					
0x1FF	120.00	00 mV				
0x200	-120.000 mV (equal to 0x201)					
0x201	-120.000 mV					
0x202	-119.765 mV					
0x3FE	-0.470 mV					
0x3FF	-0.235 mV					

Table 117: Adjustment Offset (static)

Figure 52: Signals before (solid) and after (dashed) Offset Adjustment with a positive DC value

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 71/85

Amplitude

All four phases of the cosine and sine signals before and after amplitude adjustment are shown in Figure 53. By changing SC_GAIN, the amplitudes of both cosine and sine are changed.

COS = COS_GAIN · AMP_COS ·
$$\cos(\omega t)$$

SIN = SIN_GAIN · AMP_SIN · $\sin(\omega t)$

Higher SC_GAIN increases the amplitude of the cosine signals and decreases the amplitude of the sine signals.

The amplitude correction factor CFA is defined as

$$CFA = \frac{COS_GAIN}{SIN_GAIN}$$

To correct amplitude mismatch, the correction factor CFA can be calculated as

$$CFA = \frac{AMP_SIN}{AMP_COS}$$

Note: AMP_SIN and AMP_COS are the **uncorrected** amplitudes for SC_GAIN = 0x000.

SC_GAIN(1:	:0)	Addr. (0x1, 0x04;	bit 7:6	default: 0x000
SC_GAIN(9	:2)	Addr. (0x1, 0x05;	bit 7:0	
Code	CFA				
Signed (2K)			$\left(\frac{14}{11}\right)$	SC GAIN 511	
0x200	0.7857	(equal	to 0x201)		
0x201	0.7857				
0x202	0.7861				
0x3FF	0.9995				
0x000	1.0000				
0x001	1.0005				
0x1FE	1.2721				
0x1FF	1.2727				

Table 118: Adjustment cosine-to-sine amplitude ratio (static)

Figure 53: Signals before (solid) and after (dashed) Amplitude Adjustment with a positive value

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 72/85

Phase

The differential cosine and sine signals before and after phase adjustment are shown in Figure 54.

In ideal systems with no phase error, PH_COS = 90°e and PH SIN = 0°e, the phase error can be described as

$$PH_ERR = 90^{\circ}e - (PH_COS - PH_SIN) = 0^{\circ}e$$

In this example, the phase difference between cosine and sine is larger than 90°e:

$$PH_ERR = 90^{\circ}e - (PH_COS - PH_SIN) < 0^{\circ}e$$

By changing SC_PHASE, both the phase of cosine and sine are changed:

To adjust the phase between cosine and sine, SC_PHASE has to be increased until PH_ERR = 0°e:

SC PHASE	(1:0)	Addr. 0x1, 0x06;	hit 7:6	default: 0x000		
SC PHASE	` '			deladit. 0x000		
Code	COR		DIC 7.0			
Signed	COIN	11				
(2K)		SC_PHA	ASE · 11.4	° •		
(=. 1)		511	· 11.4	е		
0000	44.40	20.0- /	04)			
0x200		00 °e (equal to 0x2	01)			
0x201	-11.40	00 °e				
0x202	-11.37	78 °e				
0x3FF	-0.022	2°e				
0x000	0.000	°e				
0x001	0.022 °e					
0x1FE	11.37	8°e				
0x1FF	11.40	0°e				

Table 119: Adjustment phase between cosine and sine (static)

Figure 54: Signals before (solid) and after (dashed) Phase Adjustment with a positive value

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 73/85

Adjustment Analog, Static

COS_OFF, SIN_OFF, SC_GAIN and SC_PHASE can be calculated automatically by executing command AUTO_ADJ_ANA. There are several settings available to individually adapt the autocalibration procedure, however using the default values for AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO is highly recommended.

When executing command AUTO_ADJ_ANA, the system must be rotating/moving. If constant speed is applied, the minimum speed can be calculated with the formulas in Table 124. There is also an example given that contains typical values for a rotary system with a code disc of 26 mm diameter and a linear system, both with the default values for AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO.

The time required for the analog autocalibration with constant speed can be calculated with the formulas in Table 125. There is also an example given that contains typical values for systems described above and rotating/moving at 6 times the minimum speed. The time required can be reduced by increasing the speed. However, very high speeds may reduce the adjustment quality. For very slow systems, the minimum speed can be reduced by factor 10 activating AC_ETO.

Note: In FlexCode®-systems, the minimum speed and the time required for the analog autocalibration change as described in FLEXCODE® on page 69. For short linear applications, the calibration process can be performed by moving the sensor back and forth.

For frequencies f()sin above approx. 50 kHz, the analog adjustment is internally disabled.

AC_SEL1(3	:0) Addr. 0x5C; bit 3:0	default: 0xF	
Code	Description		
0xF	Best but longest autocalibration		
0x0	Worst but fastest autocalibration		

Table 120: Autocalibration Select Start

AC_SEL2(3	:0) Addr. 0x5C; bit 7:4	default: 0x0		
Code	Description			
0x0	Best but longest autocalibration			
0xE	Worst but fastest autocalibration			
0xF	No autocalibration			

Table 121: Autocalibration Select End

AC_COUNT	(3:0)	Addr. 0x5D;	bit 3:0	default: 0x8
Bit	Value			
3:0	Samp	les per autoca	libration st	ep, logarithmic

Table 122: Autocalibration Count

AC_ETO	Addr. 0x5D; bit 7	default: 0
Code	Description	
0	Regular timeout for analog/digital a	utocalibration
1	Extended timeout for analog/digital minimum speed required is reduced	

Table 123: Autocalibration Extended Timeout

Note: AC_SEL1, AC_SEL2, AC_COUNT and AC ETO are shared among all autocalibrations.

rotary	$n_{min} = 2^{AC_COUNT - SYS_eff} \cdot 1.25 \frac{1}{s}$	$n_{\text{min,typ,} \varnothing 26} = 1.25 \frac{1}{s} = 75 RPM$
linear	$v_{min} = 2^{AC_COUNT} \cdot 2.5 \cdot 10^{-4} \frac{m}{s}$	$v_{min,typ} = 6.4 \frac{cm}{s}$

Table 124: Minimum speed required for analog autocalibration with default settings

rotary	$t_{rot} \approx 2^{\text{AC_COUNT - SYS_eff}} \cdot \frac{\text{AC_SEL1} - \text{AC_SEL2}}{\text{n}}$	$t_{\text{rot,typ},\varnothing26,450\text{RPM}}pprox2.0\text{s}$
linear	$t_{lin} pprox 2^{AC_COUNT} \cdot rac{AC_SEL1 - AC_SEL2}{4883 rac{1}{m} \cdot v}$	$t_{\text{lin,typ,38.4cm/s}} pprox 2.0 extsf{s}$

Table 125: Time required for analog autocalibration with default settings

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 74/85

Adjustment Analog, Dynamic

Besides the static analog adjustment, iC-PZ is able to correct signal drift during operation, e.g. caused by temperature. The sensitivity against dynamically occurring effects is selected individually for each parameter via SC_OFF_SEL, SC_GAIN_SEL and SC_PHASE_SEL. Those values are not affecting the static values set for COS_OFF, SIN_OFF, SC_GAIN and SC_PHASE.

SC_OFF_SI (3:0)	EL Addr. 0x2, 0x00; bit 3:0 default: 0x0		
Code	Function		
0x0	Disabled		
0x1	Lowest Dynamic		
	(logarithmic)		
0x7	Moderate Dynamic		
	(logarithmic)		
0xF	Highest Dynamic		

Table 126: Dynamic analog offset adjustment select

SC_GAIN_S (3:0)	SEL Addr. 0x2, 0x00; bit 7:4 default: 0x0		
Code	Function		
0x0	Disabled		
0x1	Lowest Dynamic		
	(logarithmic)		
0x7	Moderate Dynamic		
	(logarithmic)		
0xF	Highest Dynamic		

Table 127: Dynamic analog amplitude-ratio adjustment select

SC_PHASE (3:0)	SEL Addr. 0x2, 0x01; bit 3:0 default: 0x0		
Code	Function		
0x0	Disabled		
0x1	Lowest Dynamic		
	(logarithmic)		
0x7	Moderate Dynamic		
	(logarithmic)		
0xF	Highest Dynamic		

Table 128: Dynamic analog phase adjustment select

Adjustment Analog, Applied Correction

COS_OFFS, SIN_OFFS, SC_GAINS and SC_PHASES are giving information about the currently applied correction values of both static and dynamic analog adjustment.

Note: COS_OFFS, SIN_OFFS, SC_GAINS and SC_PHASES are read-only and can not be stored in the EEPROM. When the dynamic adjustment is disabled, its correction value is set to 0 and only the static adjustment is effective.

COS_OFFS(1:0)		Addr. 0x1, 0x20;	bit 7:6	default: 0x000
COS_OFFS(9:2)		Addr. 0x1, 0x21;	bit 7:0	
SIN_OFFS(1:0)		Addr. 0x1, 0x22;	bit 7:6	default: 0x000
SIN_OFFS(9:2)		Addr. 0x1, 0x23;	bit 7:0	
Code Value				
	Identical to COS_OFF and SIN_OFF			

Table 129: Adjustment offset (static+dynamic)

SC_GAINS(1:0)		Addr. 0x1, 0x24;	bit 7:6	default: 0x000
SC_GAINS	(9:2)	Addr. 0x1, 0x25;	bit 7:0	
Code	Value			
Identica		cal to SC_GAIN		

Table 130: Adjustment cosine-to-sine amplitude ratio (static+dynamic)

SC_PHASE (1:0)	S Addr. 0x1, 0x26;	bit 7:6	default: 0x000
SC_PHASE (9:2)	S Addr. 0x1, 0x27;	bit 7:0	
Code	Value		
	Identical to SC_PHASE		

Table 131: Adjustment phase between cosine and sine (static+dynamic)

COS_OFFS, SIN_OFFS, SC_GAINS and SC_PHASES are latched by reading their lowest address 0x20, 0x22, 0x24 and 0x26 so that all corresponding register values are related to the same request. Reading those parameters from lowest to highest register address is mandatory.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 75/85

ADJUSTMENT DIGITAL

Adjustment Digital, Static

The initial digital autocalibration is done by executing command AUTO_ADJ_DIG. AI_PHASE and AI_SCALE are calculated automatically, so that even significant misalignments between incremental and absolute track can be compensated.

Note: Changing Al_PHASE and/or Al_SCALE affects position calculation so that current offsets ST_OFF, MT_OFF, ABZ_OFF and UVW_OFF as well as eccentricity compensation parameters may become invalid.

Command AUTO_READJ_DIG can be used to compensate minor changes in alignment for a system that has been calibrated before. The current singleturn position will not be affected and all offsets stay valid. There are several settings available to individually adapt the auto-calibration procedure, however using the default values for AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO is highly recommended.

Note: AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO are shared among all autocalibrations.

When executing command AUTO_ADJ_DIG or AUTO_READJ_DIG, the system must be rotating/moving. If constant speed is applied, the minimum speed can be calculated with the formulas in Table 134. There is also an example given that contains typical values for a rotary system with a code disc of 26 mm diameter and a linear system, both with the default values for AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO.

The time required for the digital autocalibration with constant speed can be calculated with the formulas in Table 135. There is also an example given that contains typical values for systems described above and rotating/moving at 5 times the minimum speed. The time required can be reduced by increasing the speed. However, very high speeds may reduce the adjustment quality. For very slow systems, the minimum speed required can be reduced by factor 10 activating AC_ETO.

Note: In FlexCode®-systems, the minimum speed and the time required for digital autocalibration change as described in FLEXCODE® on page 69. For short linear applications, the calibration process can be performed by moving the sensor back and forth.

AI_PHASE(1:0)	Addr. 0x1, 0x08;	bit 7:6	default: 0x000
AI_PHASE(9:2)	Addr. 0x1, 0x09;	bit 7:0	
Code	Pha	se adjustment value		
Signed (2K)		Al_PHA 512	SE - 180	°e

Table 132: Adjustment phase error (static)

AI_SCALE(0)	Addr. 0x1,0x0A;	bit 7	default: 0x000
AI_SCALE(8:1)		Addr. 0x1,0x0B;	bit 7:0	
Code	Scal	Scale adjustment factor		
Signed (2K)		1 + Al	SCALE 1820	

Table 133: Adjustment scale error (static)

rotary	$n_{\text{min}} = 2^{\text{AC_COUNT - SYS_eff}} \cdot 1.5\frac{1}{s}$	$n_{\text{min,typ},\varnothing 26} = 1.5\frac{1}{s} = 90 RPM$
linear	$v_{\text{min}} = 2^{\text{AC_COUNT}} \cdot 3 \cdot 10^{-4} \frac{m}{\text{s}}$	$v_{\text{min,typ}} = 7.68 \frac{cm}{s}$

Table 134: Minimum speed required for digital autocalibration with default settings

rotary	$t_{ m rot} pprox 2^{ m AC_COUNT - SYS_eff} \cdot rac{AC_SEL1 - AC_SEL2}{rac{3}{4} \cdot n}$	$t_{ m rot,typ,arphi26,450RPM}pprox 2.67$ s
linear	$t_{lin} pprox 2^{AC_COUNT} \cdot rac{AC_SEL1 - AC_SEL2}{3662 rac{1}{m} \cdot V}$	$t_{ m lin,typ,38.4cm/s} pprox 2.73s$

Table 135: Time required for digital autocalibration with default settings

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 76/85

Adjustment Digital, Dynamic

Besides the static digital adjustment, iC-PZ is able to compensate misalignments during operation. The sensitivity against dynamically occurring effects is selected individually for each parameter via Al_P_SEL and Al_S_SEL. Those values are not affecting the static values set for Al_PHASE and Al_SCALE.

AI_P_SEL(3	3:0) Addr. 0x2, 0x03; bit 3:0 default: 0x0
Code	Phase adjustment value
0x0	Disabled
0x1	Lowest Dynamic
	(logarithmic)
0x7	Moderate Dynamic
	(logarithmic)
0xF	Highest Dynamic

Table 136: Dynamic adjustment phase select

AI_S_SEL(3	3:0) Addr. 0x2, 0x03; bit 7:4 default: 0x0		
Code	Scale adjustment value		
0x0	Disabled		
0x1	Lowest Dynamic		
	(logarithmic)		
0x7	Moderate Dynamic		
	(logarithmic)		
0xF	Highest Dynamic		

Table 137: Dynamic adjustment scale select

Adjustment Digital, Applied Correction

Al_PHASES and Al_SCALES are giving information about the currently applied correction values of both static and dynamic digital adjustment.

Note: Al_PHASES and Al_SCALES are read-only and can not be stored in the EEPROM. When the dynamic adjustment is disabled, its correction value is set to 0 and only the static adjustment is effective.

AI_PHASES	S(1:0)	Addr. 0x1, 0x28;	bit 7:6	read-only
AI_PHASES	S(9:2)	Addr. 0x1, 0x29;	bit 7:0	
Code	Phase	e adjustment in °e ((rounded)	
	Identi	cal to AI_PHASE		

Table 138: Adjustment phase error (static+dynamic)

AI_SCALES	6(0) Addr. 0x1, 0x2A; bit 7	read-only	
AI_SCALES	6(8:1) Addr. 0x1, 0x2B; bit 7:0		
Code	Description		
	Identical to AI_SCALE		

Table 139: Adjustment scale error (static+dynamic)

Al_PHASES and Al_SCALES are latched by reading their lowest address 0x28 and 0x2A so that all corresponding register values are related to the same request. Reading those parameters from lowest to highest register address is mandatory.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 77/85

ADJUSTMENT ECCENTRICITY

Code discs mounted eccentric are providing a long-wave sinusoidal position error over a full revolution. Most of this error can be compensated by the eccentricity adjustment of the iC-PZ. The correction values ECC_AMP and ECC_PHASE are calculated on-chip by executing command AUTO_ADJ_ECC. The autocalibration is performed over 2^AC_COUNT revolutions. Using the default value for AC_COUNT is highly recommended. Before starting the autocalibration, the eccentricity correction has to be switched off via ECC_EN.

Note: AC_COUNT is shared among all autocalibrations.

The minimum speed for the eccentricity autocalibration given in Table 143 is independent of the code disc diameter.

The time required for the eccentricity autocalibration procedure with constant speed can be calculated with the formula in Table 144. There is also an example given that contains a typical value for a system rotating/moving at 30 times the minimum speed. The time required can be reduced by increasing the speed.

Rotating at constant speed and at steady state is crucial when eccentricity autocalibration is performed.

ECC_AMP(7:	0)	Addr. 0x2,	0x04;	bit 7:0	default:
ECC_AMP(15:8)		Addr. 0x2,	0x05;	bit 7:0	0x0000000
ECC_AMP(23:16)		Addr. 0x2,	0x06;	bit 7:0	
ECC_AMP(31:24)		Addr. 0x2,	0x07;	bit 7:0	
Code	Eccentricity amplitude value				
Unsigned			00 μ m		

Table 140: Eccentricity amplitude error

ECC_PHASE	(5:0)	Addr. 0x2, 0x08;	bit 7:2	default: 0x0000
ECC_PHASE(13:6)		Addr. 0x2, 0x09;	bit 7:0	
Code	Eccei	Eccentricity phase value		
Signed (2K)		360°m - 1		ASE

Table 141: Eccentricity phase error

ECC_EN	Addr. 0x2, 0x0A; bit 0	default: 0
Code	Value	
0	Eccentricity correction off	
1	Eccentricity correction on	

Table 142: Enable eccentricity correction

rotary $n_{min} = 0.5\frac{1}{s}$ $n_{min,all} = 0.5\frac{1}{s}$	= 30 <i>RPM</i>
--	-----------------

Table 143: Minimum speed for eccentricity autocalibration

rotary $t_{rot} \approx 2^{AC_COUNT} \cdot \frac{1}{n}$	$t_{ m rot,typ,all,900RPM}pprox 17s$
--	--------------------------------------

Table 144: Time required for eccentricity autocalibration with default settings

Rev F1, Page 78/85

SAFETY ADVICE

Depending on the mode of operation, these devices emit highly concentrated visible blue light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 and IEC 62471.

HANDLING ADVICE

Because of the specific housing materials and geometries used, these LED devices are sensitive to rough handling or assembly and can thus be easily damaged

or may fail in regard to their electro-optical operation. Excessive mechanical stress or load on the LED surface or to the glass windows must be avoided.

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 79/85

DEVICE OVERVIEW

Rotative

Device	CPR	Resolution		Code Disc		Typ. I(VDDA)/mA		Max. RPM ²	
	native	bit (CPR+IPO)	arcsec	P/O Code	Туре	LED off	1.5 mm ¹	2.0 mm ¹	
iC-PZ0974	74	< 21	1.08	PZ07S	М	18.4	21.6	23.3	190 000
iC-PZ2656	256	22 (8+14)	0.31	PZ03S	Р	18.4	21.6	23.3	56 250
iC-PZ2656	256	22 (8+14)	0.31	PZ03S	М	18.4	21.6	23.3	56 250
iC-PZ2656	446	< 23	0.18	PZ08S	М	18.4	21.6	23.3	32 200
iC-PZ205	1024	24 (10+14)	0.08	PZ05S	М	18.4	24.0	27.4	14 000

Linear

Device	Max. Len.	Resolution	on	Code D	isc	Тур	. I(VDDA)	/mA	Max. Speed
	m	bit	nm	P/O Code	Туре	LED off	1.5 mm ¹	2.0 mm ¹	m/s
iC-PZ205	6.7	29 (15+14)	12.5	PZ01L		18.4	25.1	29.4	50

Type M = Metal
Type P = Polycarbonate
Type F = Film
Type [] = Glass

Device availability on request.

Table 145: Device overview

 $^{^{1}\,}$ Air gap (iC to code disc / linear scale), I(VDDA) without analog output buffer

 $^{^2}$ In FlexCode®-systems, Max. RPM changes as described in chapter $\textbf{FLEXCODE}^{\$}.$

Rev F1, Page 80/85

DESIGN REVIEW: Notes On Chip Functions

iC-PZxx	xxx Z	
No.	Function, Parameter/Code	Description and Application Hints
1	ABZ Generator	Z signal level changes during configuration read from external EEPROM if ABZ_CFG(1)= 1.
2	UVW Generator	UVW signal levels not determined during startup. Valid UVW signal output 50 μ s after DIAG(24) = 1 (RDY).
3	System Definition	For SYS_OVR ≠0x0, system startup may finish incompletely. In this case, a system reboot is required, e.g. via pin NRES, command REBOOT, or power cycle.
4	I2C	I2C-interface suits single-master applications only.
5	Feature FLEXCODE® Feature DISC/SCALE CORRECTION Feature ABZ/UVW ready Parameter LED_CONST Command CHIP_REV Default value IPO_FILT1	Feature/parameter/command available with chip release Y.

Table 146: Notes on chip functions regarding iC-PZxxxx chip revision Z

iC-PZx	iC-PZxxxx Y					
No.	Function, Parameter/Code	Description and Application Hints				
3	System Definition	For SYS_OVR ≠0x0, system startup may finish incompletely. In this case, a system reboot is required, e.g. via pin NRES, command REBOOT, or power cycle.				
4	I2C	I2C-interface suits single-master applications only.				
6	Adjustment Analog	Command AUTO_ADJ_ANA requires SC_OFF_SEL, SC_GAIN_SEL or SC_PHASE_SEL ≠0.				

Table 147: Notes on chip functions regarding iC-PZxxxx chip revision Y

iC-PZxxxx X	iC-PZxxxx X				
No.	Function, Parameter/Code	Description and Application Hints			
		None at time of release.			

Table 148: Notes on chip functions regarding iC-PZxxxx chip revision X

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 81/85

REVISION HISTORY

Rel.	Rel. Date ¹	Chapter	Modification	Page
A1	2019-04-18		Initial release	all

Rel.	Rel. Date ¹	Chapter	Modification	Page
B1	2019-11-08	FEATURES	Features updated	1
		BLOCK DIAGRAM	Updated	1
		DESCRIPTION	Description updated	2
		PACKAGING INFORMATION	Added reference for C1V8	5
		ABSOLUTE MAXIMUM RATINGS	G006/G007: Added parameters	7
		ELECTRICAL CHARACTERISTICS	003: Changed max. value 217: Added parameter 222/224: Added parameter 226/227: Changed Conditions and max. value 229/230: Changed parameter description 231: Added parameter 3: Renamed section 505: Corrected definition C02: Replaced SYS with SYS_eff T03: Added min./max. values W01: Renamed parameter, updated Conditions W02: Removed parameter tstart()fast Z01-Z02: Updated values Z05-Z07: Updated values	8-11
		OPERATING REQUIREMENTS: Supply Voltages	Chapter added	12
		OPERATING REQUIREMENTS: SSI Slave	I206: Changed max. value	14
		OPERATING REQUIREMENTS: SSI Slave	I202-I204: Changed min. value	14
		OPERATING REQUIREMENTS: SPI Slave	I311: Changed max. value	15
		EEPROM SELECTION	Chapter updated	18
		INTERFACE PORTS	Chapter renamed	19
		PCB EXAMPLES	Chapter added for PCB Examples	20
		BANK ORGANIZATION, EEPROM & RPL	Renamed section "I2C Devices" to "Banks for I2C Devices"	21
		REGISTER MAP	Updated	23-28
		GENERAL	FILT1 setting for normal operation changed to 0xEA	29
		LED POWER CONTROL	Parameter LED_CONST added	31
		TEMPERATURE SENSOR	Chapter renamed	35
		ABSOLUTE DATA INTERFACE (ADI)	Chapter renamed	36
		ABZ GENERATOR	Chapter updated	41-45
		UVW GENERATOR	Chapter updated	46-48
		POSITION OFFSET	Figure added	49
		COMMANDS	Added command "CHIP_REV"	61
		IDs, SERIAL NUMBERS & SYSTEM DEFINITION	Definition of SYS_eff added Note added	65
		FLEXCODE®	Chapter added for FlexCode®	67
		DISC/SCALE CORRECTION	Chapter added for Disc/Scale Correction	68
		DIAGNOSIS	Diagnosis bits 6, 7 added	68
		ADJUSTMENT ANALOG	Notes added Updated formulas for autocalibration speed and time	71-76
		ADJUSTMENT DIGITAL	Note added Updated formulas for autocalibration speed and time	77
		DEVICE OVERVIEW	PZ0974 added	82

Rel.	Rel. Date ¹	Chapter	Modification	Page
C1	2020-07-08	all	Updated descriptions	all
		BLOCK DIAGRAM	Renamed function blocks: 'Random Evaluation' 'Singleturn Position Evaluation' 'Disc/Scale Correction' 'System Configuration' 'Position Offset' 'Position Settings'	1

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 82/85

	DESCRIPTION	Added 'General notice on application-specific programming'	2
	PACKAGING INFORMATION	Added Sensor Layout and AOI Criteria	5
	ELECTRICAL CHARACTERISTICS	215: Moved typ. value to min. value P03: Changed max. value W01: Changed typ. value Renamed 'Random' → 'PRC'	9-12
	OPERATING REQUIREMENTS	Reworked Figure 1: Supply voltages at startup	13
	EEPROM SELECTION	Added requirement: 11-bit addressing scheme	19
	STARTUP	Removed bullet point about uProcessor watchdog	19
	CIRCUIT DESIGN PROPOSALS	Renamed chapter (former: PCB EXAMPLES)	21
	MEMORY ORGANIZATION	Renamed chapter (former: BANK ORGANIZATION, EEPROM & RPL)	22
	REGISTER MAP	Removed IPO_MODE, IPO_RESMIN, IPO_RESMAX, IPO_HYS and RAN_VAL Added AC_ETO Renamed sector 'Random Evaluation' → 'Singleturn Position Evaluation'	23-28
	INTERFACE PORTS CONFIGURATION	Renamed chapter (former: GENERAL) Moved subsections about interpolator to new chapter 'INTERPOLATOR' Moved subsection about position data length to new chapter 'POSITION SETTINGS' Renamed subsection 'VDDIO voltage selection' 'VDDIO Monitoring'	29
	INTERPOLATOR	Added chapter Removed interpolator legacy mode	31
	SINGLETURN POSITION EVALUATION	Renamed chapter (former: RANDOM EVALUATION) Removed RAN_VAL and timing diagram Changed description of RAN_TOL and RAN_FLD	31
	ANALOG OUTPUT	Corrected LED_CUR = 0 to LED_CONST = 0 in note box	32
	POSITION SETTINGS	Renamed chapter (former: POSITION OFFSET) Included ST_PDL and MT_PDL of former chapter GENERAL	41
	BISS SLAVE	Removed note on SSI_GRAY affecting BiSS single cycle data Removed Figure: BiSS protocol showing Control Communication Removed subsection BiSS Commands	43-44
	SPI SLAVE	Reworked SPI Operation Codes: 0x81 Read Registers (former: Register Read (Continuous)) 0xCF Write Registers (former: Register Write (Continuous)) 0xA6 Read Position (former: Position Read) 0xD9 Write Command (former: Write Command) 0x9C Read Status (former: Read Status) 0x9T Request Data From I2C Slave (former: Register Read (Single)) 0xD2 Transmit Data To I2C Slave (former: Register Write (Single)) 0xAD Get I2C Transmission Info (former: Register Status/Data) 0xB0 Activate Slave In Chain (former: Activate)	46-50
	COMMANDS	Added commands MTST_PRESET_STORE, MT_PRESET_STORE, ABZ_PRESET_STORE, UVW_PRESET_STORE	51
	ABSOLUTE DATA INTERFACE (ADI)	Added note on ADI_CFG bit 0	55
	I2C MASTER	Added Figure 47: I2C protocol	59
	DIAGNOSIS	Renamed DIAG bit 11 'Random synchronization failed' \rightarrow 'PRC synchronization failed'	63
	SYSTEM CONFIGURATION	Added chapter (former: IDs, SERIAL NUMBERS & SYSTEM DEFINITION and DISC/SCALE CORRECTION) Changed default values of DEV_ID and MFG_ID Changed note on SYS_OVR Changed SYS_OVR overriding SYS_eff only, not affecting SYS anymore Changed naming order of BISS_PROFILE_ID, SERIAL, DEV_ID and MFG_ID	65-66
	ADJUSTMENT ANALOG	Added AC_ETO Removed analog adjustment requiring SC_OFF_SEL, SC_GAIN_SEL or SC_PHASE_SEL to be non-zero Corrected minimum speed to 1.25 1/s in Table 131 Changed recommended values to default	68-72
	ADJUSTMENT DIGITAL	Added note on AC_SEL1, AC_SEL2, AC_COUNT and AC_ETO Changed recommended values to default	73-74
	ADJUSTMENT ECCENTRICITY	Corrected calculation of ECC_AMP Added note on AC_COUNT Changed recommended values to default Changed RPM to 900 in Table 150	75
_	DEVICE OVERVIEW	Updated	77

Rel.	Rel. Date ¹	Chapter	Modification	Page
D1	2020-10-23	ELECTRICAL CHARACTERISTICS	004: Changed typ. value Added filter settings to C01 and C02 Updated Z03 to more than 2 slaves in SPI daisy chain	9-12
		BiSS Slave	Changed I105 to include Start Bit Delay	14
		SPI Slave	Added I312 and I313	16

Rev F1, Page 83/85

EEPROM SELECTION	Updated description	19
INTERFACE PORTS CONFIGURATION	Corrected default value of VDDIOSEL	29
BISS SLAVE	Updated description regarding total data length	43
SPI SLAVE	Updated description regarding total data length Reworked description for SPI opcode 0xB0	47, 50
I2C MASTER	Changed available I2C_DEV_ID range	58
FLEXCODE®	Removed specification modification for ABZ_PER Added description and example for output data value range	67
ORDERING INFORMATION	Updated Evaluation Kits	82

Rel.	Rel. Date ¹	Chapter	Modification	Page
E1	2021-06-14	FEATURES	Added assembly tolerances to features	
		PACKAGING INFORMATION	Updated link to customer information 'Optical Selection Criteria'	5
		PACKAGE DIMENSIONS Updated drawing		7
		THERMAL DATA	T03: Updated link to customer information 'Handling and Soldering Conditions'	8
		ELECTRICAL CHARACTERISTICS	Added 'GNDA = GNDIO = 0 V' to operating conditions Updated 'VDDIO = 2.25VDDA' in operating conditions 007: Added note on linear applications C03: Added parameter fout() S05/S06: Corrected unit Renamed Item No. of Temperature Sensor to U Z01: Added 'Permissible' Z02: Added 'Permissible' Z03: Added 'Permissible'	9ff
		SPI Slave	I306: Corrected parameter description	16
		EEPROM SELECTION	Added I2C device address 0x50	19
		REGISTER MAP	Changed ADI_CFG(0) to reserved[0]	23
		ABZ GENERATOR	Updated example for ABZ_PER Added example for v _{max} Corrected description of DIAG(6) to 'not(ABZ_RDY)' Corrected description of DIAG(24) to 'not(RDY)'	33, 37
		UVW GENERATOR	Corrected description of DIAG(7) to 'not(UVW_RDY)'	40
		POSITION SETTINGS	Added note for properly setting MT_PDL with external MT slaves	41
		BISS SLAVE	Updated BiSS slave performance table Added BiSS protocol commands Added warning when sending short BiSS frames < 6 MA pulses	43, 45
		SSI SLAVE	Added warning when sending short SSI frames < 6 MA pulses	47
		SPI SLAVE	Renamed opcode 0x9C 'Read Status' → 'Read Diagnosis' Renamed opcode 0xAD 'Get I2C Transmission Info' → 'Get Transaction Info' Reworked description of opcode 0xAD 'Get Transaction Info'	48ff
		ABSOLUTE DATA INTERFACE (ADI)	Removed note on ADI_CFG(0)	57
		TEMPERATURE SENSOR	Added instruction for reading TEMP	63
		ADJUSTMENT ANALOG	Corrected description of SC_GAIN 0x001 to '1.0005' Note on linear applications Added instruction for reading COS_OFFS, SIN_OFFS, SC_GAINS and SC_PHASES	71,73,74
		ADJUSTMENT DIGITAL	Added note on position validity when changing AI_PHASE and/or AI_SCALE Note on linear applications Added instruction for reading AI_PHASES and AI_SCALES	75f

Rel.	Rel. Date ¹	Chapter	Modification	Page
F1	2023-04-20	DEVICE OVERVIEW	Corrected PZ07S disc M-Type	79
		THERMAL DATA	MSL3	8
		ABSOLUTE MAXIMUM RATINGS	ESD desription	8
		ELECTRICAL CHARACTERISTICS	Renamed parameters in "Temperature Sensor" from Uxx to Txx	
		CIRCUIT DESIGN PROPOSALS	EEPROM Advice	21
		ORDERING INFORMATION	Corrected Eval-Kit Code Disc PZ03PS	85

¹ Release Date format: YYYY-MM-DD

Rev F1, Page 84/85

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

HIGH-RESOLUTION REFLECTIVE ABSOLUTE ENCODER

Rev F1, Page 85/85

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PZ2656	32-pin optoQFN, 5 mm x 5 mm, 0.9 mm thickness RoHS compliant		iC-PZ2656 oQFN32-5x5
iC-PZ0974	32-pin optoQFN, 5 mm x 5 mm, 0.9 mm thickness RoHS compliant		iC-PZ0974 oQFN32-5x5
iC-PZ205	32-pin optoQFN, 5 mm x 5 mm, 0.9 mm thickness RoHS compliant		iC-PZ205 oQFN32-5x5
Evaluation Kit	Kit with Reflective Encoder IC (approx. 61mm x 64 mm), Code Disc PZ03PS		iC-PZ2656 EVAL PZ1M
	Kit with Reflective Encoder IC (approx. 61mm x 64 mm), Linear Scale PZ01L		iC-PZ205 EVAL PZ1M LIN
	Kit with Reflective Encoder IC (approx. 61mm x 64 mm), Code Disc PZ05SM		iC-PZ205 EVAL PZ1M ROT
	Kit with Reflective Encoder IC (approx. 61mm x 64 mm), Code Disc PZ07SM		iC-PZ0974 EVAL PZ1M
Motherboard	Adapter PCB (approx. 80 mm x 110 mm)		iC-PZ EVAL PZ2D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18 Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim Web: https://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners