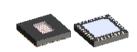
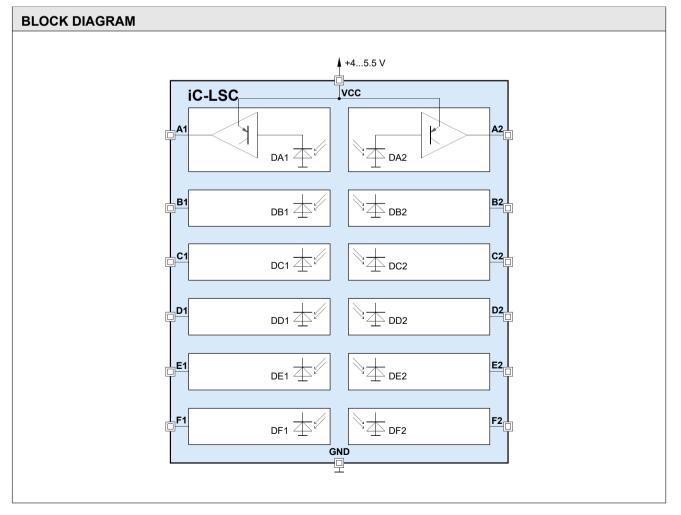


Rev D1, Page 1/9

FEATURES


- Monolithic array of independent photosensors with excellent matching
- Compact photosensor size of 800 µm x 300 µm enabling high-quality encoder scanning at reduced system dimensions
- Narrow track pitch of 0.42 mm cuts down illumination efforts
- Enhanced EMI immunity due to on-chip pre-amplification
- Dark current compensation permits high temperature operation
- Open-collector outputs as highside current source
- Simple gain setting and current-to-voltage conversion by external load resistors
- ♦ Single supply operation from 4 V to 5.5 V
- Low power consumption
- Space saving, RoHS compliant optoQFN and optoBGA packages
- Options: extended temperature range of -40 °C to 125 °C, customized COB modules, reticles and code discs

APPLICATIONS


- Optical position encoding from analog sine/cosine signals
- Incremental encoders with index signal
- Motor commutation encoders

PACKAGES

14-pin optoBGA 6.2 mm x 5.2 mm RoHS compliant 32-pin optoQFN 5 mm x 5 mm / 0.9 mm RoHS compliant

Rev D1, Page 2/9

DESCRIPTION

The iC-LSC sensor array, coming with 12 independent channels, is a general purpose optoelectronic scanner made to suit a variety of encoding applications, such as rotary and linear encoders used for motion control, robotics, brushless DC motor commutation, power tools etc.

The sensor array features monolithically integrated photosensors with active areas of 800 µm x 300 µm each in combination with fast on-chip photocurrent amplifiers, enabling an analog output at reasonable signal strength to the circuit board.

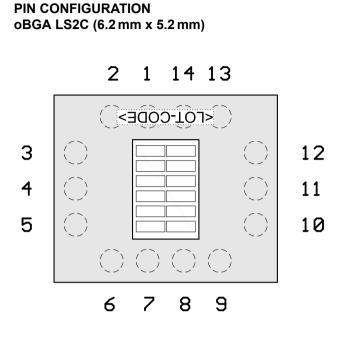
The highside current source output construction avoids a ground referenced signal and permits the subsequent electronics to adjust the gain. In its simplest form this is done by load resistors, for instance.

The spectral sensitivity range includes visible to near infrared light, with the maximum sensitivity being close to a wavelength of 700 nm.

Output currents of up to 50 µA are supplied under low light conditions, for instance when illuminated at only 3μ W/mm² by an 850 nm LED. The photocurrent gain is 46 dB typically.

PACKAGING INFORMATION

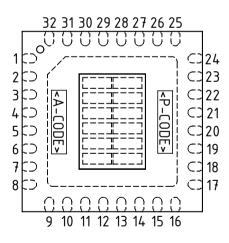
PAD LAYOUT Chip size 2.80 mm x 2.76 mm


PAD FUNCTIONS No. Name Function

IO .	Name	Function
1	VCC	+45.5 V Supply Voltage
2	A1	Highside Current Source Output
3	B1	Highside Current Source Output
4	C1	Highside Current Source Output
5	D1	Highside Current Source Output
6	E1	Highside Current Source Output
7	F1	Highside Current Source Output
8	F2	Highside Current Source Output
9	E2	Highside Current Source Output
10	D2	Highside Current Source Output
11	C2	Highside Current Source Output
12	B2	Highside Current Source Output
13	A2	Highside Current Source Output
	0 1 1 D	

14 GND Ground

Rev D1, Page 3/9



PIN FUNCTIONS Name Function No

NO.	name	Function
1	VCC	+45.5 V Supply Voltage
2	A1	Highside Current Source Output
3	B1	Highside Current Source Output
4	C1	Highside Current Source Output
5	D1	Highside Current Source Output
6	E1	Highside Current Source Output
7	F1	Highside Current Source Output
8	F2	Highside Current Source Output
9	E2	Highside Current Source Output
10	D2	Highside Current Source Output
11	C2	Highside Current Source Output
12	B2	Highside Current Source Output
13	A2	Highside Current Source Output
14	GND	Ground

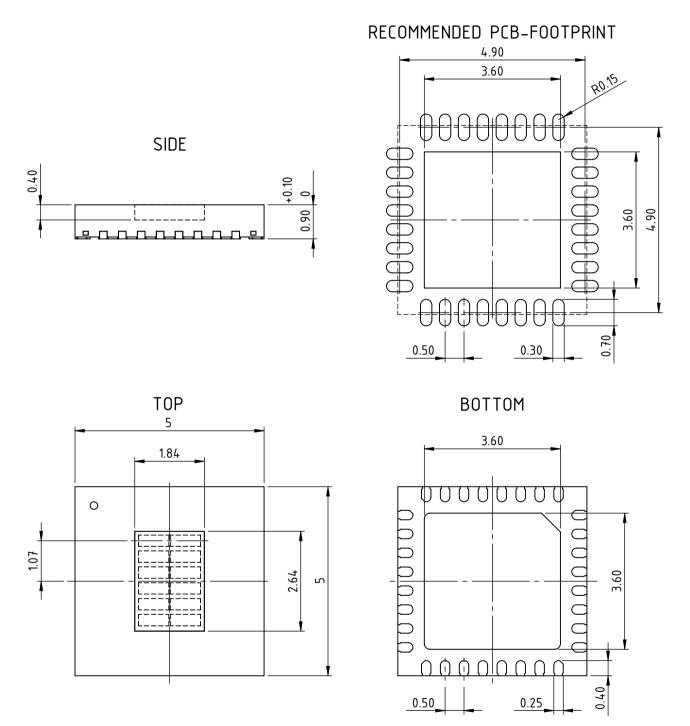
For dimensional specifications refer to the relevant package data sheet, available separately. IC top markings (such as <P-CODE> = product code, <A-CODE> = assembly code, <LOT-CODE> = assembly and lot code) indicate the orientation of the device.

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

PIN FUNCTIONS No. Name Function

1	VCC	+45.5 V Supply Voltage
2	n.c. ¹	
3	A1	Highside Current Source Output
4	B1	Highside Current Source Output
5	C1	Highside Current Source Output
6	D1	Highside Current Source Output
7	E1	Highside Current Source Output
8	F1	Highside Current Source Output
916	n.c.	
17	F2	Highside Current Source Output
18	E2	Highside Current Source Output
19	D2	Highside Current Source Output
20	C2	Highside Current Source Output
21	B2	Highside Current Source Output
22	A2	Highside Current Source Output
23	n.c.	
24	GND	Ground
2532	n.c.	
	BP	Backside Paddle ²

IC top marking: <P-CODE> = product code, <A-CODE> = assembly and lot code (subject to changes);


¹ Pin numbers marked n.c. are not in use.

² The backside paddle may have a single link to GND. A current flow across the paddle is not permissible.

Rev D1, Page 4/9

PACKAGE DIMENSIONS oQFN32-5x5

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70\mu$ m / $\pm 1^{\circ}$ (with respect to center of backside pad). Maximum molding excess $\pm 20\mu$ m / -75μ m versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. $\frac{dra_oqfn32-5x5-4_lsc_z_pack_1, 10:1}{dra_oqfn32-5x5-4_lsc_z_pack_1, 10:1}$

Rev D1, Page 5/9

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions		_	Unit
No.	-			Min.	Max.	
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	20	mA
G003	V()	Pin Voltage, all signal outputs		-0.3	VCC+0.3	V
G004	I()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through $1.5 \text{ k}\Omega$		2	kV
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature Range		-40	150	°C

THERMAL DATA

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oQFN32-5x5 package oBGA LS2C	-40 -20		125 90	°C ℃
			package oBGA LS2C ET-40/125, extended temp. range	-40		125	°C
T02	Ts	Storage Temperature Range	package oQFN32-5x5 package oBGA LS2C package oBGA LS2C ET-40/125, extended temp. range	-40 -30 -40		125 110 125	0° 0° 0°
T03	Трк	Soldering Peak Temperature	package oQFN32-5x5 tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.			245 230	° °
T04	Tpk	Soldering Peak Temperature	package oBGA LS2C tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering TOL (time on label) 8 h; MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.			245 230	Ĵ, Ĵ

All voltages are referenced to ground unless otherwise stated.

All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.

Rev D1, Page 6/9

Operations: VCC = 45.5 V, Tj = 40125 °C, unless otherwise statedItemSymbolParameterConditionsMin.Typ.Max.001VCCPermissible Supply Voltage445.5V002II/VCCSupply Current in VCC, dark $E(1=0$ Tj = 27 °C1.51.5Z.2MA003II/VCCSupply Current in VCC $\lambda_{1ED} = \lambda pk. E(1) = 0.1 mW/cm^2$ Tj = 27 °C2.24mA004Vc()hiClamp-Voltage hi at all pinsII/0 = 4 mA1.02.211V005Vc()loClamp-Voltage lo at all pinsII/0 = 4 mA1.00.3VPhotosensor101E(1mXPermissible Irradiance $\lambda_{LED} = \lambda pk$ 0.2mW/mm²102Aph()Radiant Sensitive Area0.8 mm x 0.3 mm per sensor0.24mm²103 λr Spectral Application Range Se(λr) sec Figure 1680mm²104 λpk Peak Sensitivity Wavelength Operating Rangeper sensor04.001.0105S(λ Spectral Application Range Sec Figure 1per sensor01.04.00105S(λ Spectral Application Range Operating Rangeper sensor00.14.00105S(λ Spectral Application Range Operating Rangeper sensor00.11.0105S(λ Spectral Application Range Operating Rangeper sensor01.5	ELE	CTRICAL	CHARACTERISTICS					
No. $^{\prime}$ Image and the set of t	Opera	ting conditio	ons: VCC = 45.5 V, Tj = -40125 °	C, unless otherwise stated				
Total Device001VCCPermissible Supply Voltage45.5V002I(VCC)Supply Current in VCC, dark Tj = 27 °CTj = 27 °C1.52mA003I(VCC)Supply Current in VCC $\lambda_{LED} = \lambda pk, E() = 0.1 mW/cm^2$ 2.24mA004VC()hiClamp-Voltage hi at all pinsI() = 4 mA-1.2-0.3V005Vc()loClamp-Voltage hi at all pinsI() = 4 mA-1.2-0.3VPhotosensors101E()mxrPermissible Irradiance $\lambda_{LED} = \lambda pk$ 0.2mm²103 λar Spectral Application RangeSe($\lambda ar) = 0.25 x S(\lambda)max$ 400950nm104 λpk Peak Sensitivity Wavelengthsee Figure 1680nmAWPhotocurrent Application Range104 λpk Peak Sensitivity $\lambda_{LED} = \lambda pk$ 0.4200nAOver at sensitivityVLED = 740 nm60120nAOver at sensitivityVLED = 740 nm60120AWOver at figure and accessitivity202 $\eta(r)$ Photocurrent GainCR() = Iout() / Iph()150200EKOver at figure at a sensitivity203CR()Photocurrent GainCR() = Iout() / Iph()150200KHzOutoring Range204Idout()mChannel Matchingdeviation from		Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total	Device		1	11		1	
$ \begin{array}{ c c c c c } I & I & I & I & I & I & I & I & I & I $	001	VCC	Permissible Supply Voltage		4		5.5	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	002	I(VCC)	Supply Current in VCC, dark			1.5	2	
	003	I(VCC)	Supply Current in VCC			2.2	4	1
$ \begin{array}{ c c c c c } \hline Photosensors \\ \hline Photosensors \\ \hline \hline 101 & E()mxr & Permissible Irradiance & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	004	Vc()hi	Clamp-Voltage hi at all pins	I() = 4 mA			11	V
101E()mrPermissible Irradiance $\lambda_{\text{LED}} = \lambda pk$ Image: Second Secon	005	Vc()lo	Clamp-Voltage lo at all pins	l() = -4 mA	-1.2		-0.3	V
Image: constraint of the section of the sectin of the section of the section of	Photo	sensors	·					
103λarSpectral Application RangeSe(λar) = 0.25 x S(λ)max see Figure 1400950nm104λpkPeak Sensitivity Wavelengthsee Figure 1680nm105S(λ)Spectral Sensitivity $\lambda_{LED} = \lambda pk$ 0.45AWPhotocurrent Amplifiers201lph()Permissible Photocurrent Operating Rangeper sensor00200nA202 η ()rPhoto Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{ nm}$ 600120A/W203CR()Photocurrent GainCR() = lout() / lph()150200250100204fc()hiCut-off Frequency (-3 dB)150200kHz205Alout()mChannel Matchingdeviation from mean value-15+15%206Alout()mChannel Cross Talk (operating Range)only one photosensor illuminated at the same time01VCC -1.51301Vout()Permissible Output Voltage (Operating Range)Vout() = 1 V VCC - 1.5 V VCC = 4.55 5.V, Vout() = 1 V VCC - 2 V-50 -200µA µA303tr(), tf()Output Current Rise/Fall Time Vult = a 30 pF, RL() = 10 kΩ0,7 0,8µSµS	101	E()mxr	Permissible Irradiance	$\lambda_{\text{LED}} = \lambda pk$			0.2	
Initial and preserve preser	102	Aph()	Radiant Sensitive Area	0.8 mm x 0.3 mm per sensor		0.24		mm ²
105S(λ)Spectral Sensitivity $\lambda_{LED} = \lambda pk$ 00.45AWPhotocurrent Amplifiers201lph()Permissible Photocurrent Operating Rangeper sensor0200nA202 $\eta()r$ Photo Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{ nm}$ 60200AW203CR()Photo Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{ nm}$ 60120AW203CR()Photocurrent GainCR() = lout() / lph()150200250204fc()hiCut-off Frequency (-3 dB)CR() = lout() / lph()150200KHz205Alout()mChannel Matchingdeviation from mean value-15-15%206Alout()mChannel Cross Talkonly one photosensor illuminated at the same time0%%201Vout()Permissible Output Voltage (Operating Range)1VCC - 1.5 V VCC = 4.55.5 V, Vout() = 1 V VCC - 2 V-500 -200µA µA301Vout()Permissible Output CurrentVout() = 100 nA, 1T settling (63%); Vout() = 100 nA, 1T settling (63%); Vout() = 0.80.7 0.8µs µs	103	λ ar	Spectral Application Range		400		950	nm
Photocurrent Amplifiers201lph()Permissible Photocurrent Operating Rangeper sensor00200nA202 η ()rPhoto Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{ nm}$ 60120A/W203CR()Photo Current GainCR() = lout() / lph()1502002502004204fc()hiCut-off Frequency (-3 dB)CR() = lout() / lph()150200KHz4205Δlout()mChannel Matchingdeviation from mean value-15+15%206Δlout()mChannel Cross Talkonly one photosensor illuminated at the same time0%%Current Source Outputs301Vout()Permissible Output Voltage (Operating Range)Vout() = 1 V VCC - 1.5 V VCC = 4.55.5 V, Vout() = 1 V VCC - 2 V-50 -200µµA µA303tr(), tf()Output Current Rise/Fall Time Vout() = constant CL = 30 pF, RL() = 10 kΩ0.7 0.80.7 0.8µs µs	104	λpk	Peak Sensitivity Wavelength	see Figure 1		680		nm
201 ph()Permissible Photocurrent Operating Rangeper sensor0200nA202 η ()rPhoto Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{nm}$ 60120A/W203CR()Photocurrent GainCR() = lout() / lph()150200250250204fc()hiCut-off Frequency (-3 dB)150200200KHz205 Δ lout()mChannel Matchingdeviation from mean value-15-15%206 Δ lout()mChannel Cross Talkonly one photosensor illuminated at the same time0%%Out()Permissible Output Voltage (Operating Range)1VCC -1.5V301Vout()Permissible Output Voltage (Operating Range)Vout() = 1V VCC - 1.5V VCC = 4.55 S.V, Vout() = 1V VCC - 2V-50 -200 μA μA 303tr(), tf()Output Current Rise/Fall Time Vout() = constant CL = 30 pF, RL() = 10 k\Omega0.7 0.8 0.7 0.8 μs	105	$S(\lambda)$	Spectral Sensitivity	$\lambda_{\text{LED}} = \lambda pk$		0.45		A/W
Index Operating RangeIndex IndexIndex IndexIndex Index202 η ()rPhoto Sensitivity (light-to-voltage conversion ratio) $\lambda_{LED} = 740 \text{nm}$ 60120A/W203CR()Photocurrent GainCR() = lout() / lph()150200250120204fc()hiCut-off Frequency (-3 dB)CR() = lout() / lph()150200200KHz205Δlout()mChannel Matchingdeviation from mean value-151+15%206Δlout()mChannel Cross Talkonly one photosensor illuminated at the same ime0%%Currert Source OutputVout()Permissible Output Voltage (Operating Range)1VCC -1.5-1.5%301Vout()Permissible Output Voltage (Operating Range)Vout() = 1V VCC - 1.5V VCC = 4.55.5V, vout() = 1V VCC - 2V -200-50 -200-1.5 μA 303tr(), tf()Output Current Rise/Fall Time Up (L) = constant CL = 30 pF, RL() = 10 kΩ0.7 0.80.7 0.8 μs	Photo	current Am	plifiers					
$\begin{tabular}{ c $	201	lph()		per sensor	0		200	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	202	η()r		λ_{LED} = 740 nm	60		120	A/W
$ \begin{array}{c cccc} 205 & \Delta lout()m & Channel Matching & deviation from mean value & -15 & & +15 & \% \\ 206 & \Delta lout()m & Channel Cross Talk & only one photosensor illuminated at the same time & 0 & & & & & & & & & & & & & & & & & $	203	CR()	Photocurrent Gain	CR() = lout() / lph()	150	200	250	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	fc()hi	Cut-off Frequency (-3 dB)		150	200		kHz
timetimetimetimeCurrent Source Outputs301Vout()Permissible Output Voltage (Operating Range)1VCC -1.5V302lout()Permissible Output Current VCC = 4.55.5 V, Vout() = 1 V VCC - 2.V-50 -200-50 -200 μA μA 303tr(), tf()Output Current Rise/Fall Time VCC = 4.55 pr, RL() = 10 k\Omega0.7 0.80.7 0.8 μs μs	205	⊿lout()m	Channel Matching	deviation from mean value	-15		+15	%
	206	⊿lout()m	Channel Cross Talk	5		0		%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Curre	nt Source C	Dutputs					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	301	Vout()			1			V
Vout() = constant0.7 μs CL = 30 pF, RL() = 10 kΩ0.8 μs	302	lout()	Permissible Output Current					
304 Iout()0 Output Dark Current -0.75 +0.75 μA	303		Output Current Rise/Fall Time	Vout() = constant		-		
	304	lout()0	Output Dark Current		-0.75		+0.75	μA

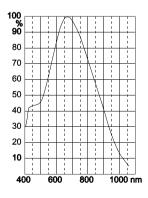


Figure 1: Relative spectral response

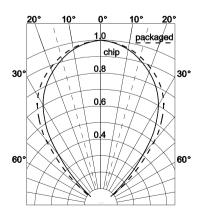


Figure 2: Typical directional characteristics

Rev D1, Page 7/9

APPLICATION CIRCUITS

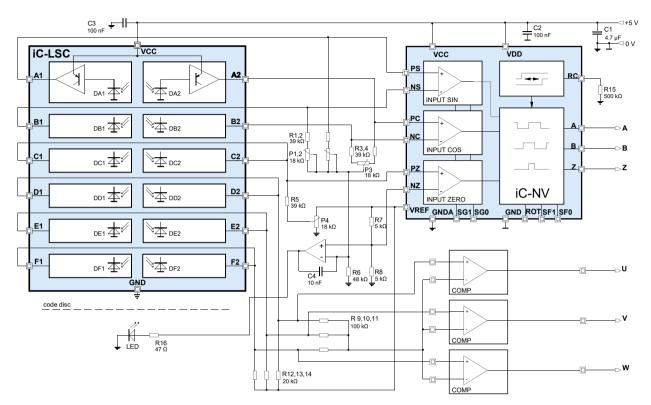


Figure 3: Optical encoder application example. Here, the sine-to-digital converter iC-NV is employed to output spike-free encoder quadrature signals featuring a minimum transition distance.

REVISION HISTORY

Rel.	Rel. Date [*]	Chapter	Modification	Page
C1	2013-04-19		RoHS supplemented, oQFN package drawing updated, thermal data: notes removed, Elec.Char. 304 leakage current, ordering information updated	

Rel.	Rel. Date [*]	Chapter	Modification	Page
D1	2021-06-23	PACKAGING INFORMATION	Update of oQFN package drawings and footnotes	3, 4
			Items T01, T02: introduction of extended operational temperture ranges Item T03, T04: hyperlink to customer information	5
		ORDERING INFORMATION	Update of listing	9

* Release Date format: YYYY-MM-DD

Rev D1, Page 8/9

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev D1, Page 9/9

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-LSC	32-pin optoQFN 5 mm x 5 mm, thickness 0.9 mm RoHS compliant	glass lid	iC-LSC oQFN32-5x5
	14-pin optoBGA 6.2 mm x 5.2 mm RoHS compliant	glass lid on-chip reticle	iC-LSC oBGA LS2C iC-LSC oBGA LS2C-xR
iC-LSC	14-pin optoBGA 6.2 mm x 5.2 mm	glass lid, leaded solder balls glass lid, leaded solder balls, extended temperature range	iC-LSC oBGA LS2C-1 iC-LSC oBGA LS2C-1 ET-40/125

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18	Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim	Web: http://www.ichaus.com
GERMANY	E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners