

The device iC-WD is a monolithic switching regulator with two downstream 5 V resp. 3.3 V linear regulators. In view of the high efficiency of the down converter for an input voltage range of 8 to 36 V, the iC-WD family is well-suited for industrial applications which require a stabilised 5 V resp. 3.3 V power supply with minimal power dissipation and few components.

Switching transistor, free-wheeling diode and oscillator are integrated, limiting the necessary external elements for the switching regulator to the inductor, the back-up capacitor and one resistor. This resistor determines the regulator's cut-off current and thus its efficiency in the particular application at hand.

🎽 Applications

ic)Haus

- 5 V resp. 3.3 V supply e.g. from 24 V industrial network

🚫 Features

- Input voltage 8 to 36 Vdc
- Highly efficient down converter
- Switching transistor and free-wheeling diode integrated
- Adjustment of the regulator cut-off current with external resistor
- Integrated 100 kHz oscillator without external components
- Switching frequency above the audible range
- Two downstream linear regulators with 200 mA/25 mA output current
- Small residual ripple with low capacitances in the μ F range
- Fault message at overtemperature and undervoltage at current-limited open-collector output
- Shutdown of switching regulator at overtemperature
- Internal reference voltages
- Low space requirement with S08 resp. tiny DFN10 package and only few external components
- Option: enhanced temperature range of -40 to 85 °C

on

The downstream linear regulators feature a low residual ripple even with relatively small smoothing capacitors in the μF range. The output voltages have an internal reference and are specified ± 5 % in the entire operating and temperature range. The use of two mutually independent linear regulators makes it possible to isolate the voltage supply of sensitive analogue circuits or sensors from the supply for digital and driver devices.

The chip temperature and the output voltages are monitored. A fault is signalled via the current-limited open-collector output NER, for example by an LED display or a logical link with other error signals from the system. In the event of overtemperature, the switching regulator is disabled to reduce the power dissipation of the chip.

Тур	(VCC/VCCA)	Package	Order Designati		
iC-WD	(5/5 V)	S08	iC-WD S08		
		SO8 thermal pad	iC-WD S08-TP		
		DFN10 (on request)	iC-WD DFN10		
iC-WDA	(3.3/3.3 V)	DFN10	iC-WDA DFN10		
iC-WDB	(3.3/5 V)	DFN10	iC-WDB DFN10		
iC-WDC	(5/3.3 V)	DFN10	iC-WDC DFN10		

Pin Functions for DFN10

Ordering Information

No.	Name	Function
1	NER	Error Output (low active)
2	n.c.	
3	VBR	Pin for shunt
4	VHL	Pin for inductor
5	GND	Ground (reference voltage)
6	GND	Ground (reference voltage)
7	VH	Intermediate Voltage
8	VCC	Output (200 mA)
9	VCCA	Output (25 mA)
10	VB	Supply Voltage

Pin Functions for SO8, SO8-tp

No.	Name	Function
1	NER	Error Output (low active)
2	VBR	Pin for shut
3	VHL	Pin for inductor
4	GND	Ground (reference voltage)
5	VH	Intermediate Voltage
6	VCC	Output (200 mA)
7	VCCA	Output (25 mA)
8	VB	Supply Voltage

Key Specifications

General	
Supply Voltage Range	8 to 36 V
Switching Regulator	
Quiescent Current in VB	
VB = 12 V	typ. 4.5 mA
VB = 24 V	typ. 3.0 mA
VB = 30 V	typ. 2.5 mA
Current in VB with full load	
WD, WDB, WDC	
VB = 12 V	typ. 132 mA
VB = 24 V	typ. 69 mA
VB = 30 V	typ. 55 mA
WDA	
VB = 12 V	typ. 116 mA
VB = 24 V	typ. 62 mA
VB = 30 V	typ. 43 mA
Switching Frequency	
no load	min. 20 kHz
full load	typ. 90 kHz
Voltage at VH	
no load	
WD, WDB, WDC	typ. 7 V
WDA	typ. 5.4 V
full load	
WD, WDB, WDC	typ. 6.3 V
WDA	typ. 5.0 V
Linear Regulators	
Output Voltage VCC	
WD, WDC	5.00 V ± 5 %
WDA, WDB	3.30 V ± 5 %
Load Current VCC	200 mA max.
Residual Ripple at VCC	typ. 35 mVpp
Output Voltage VCCA	
WD, WDB	5.00 V ± 5 %
WDA, WDC	3.30 V ± 5 %
Load Current VCCA	25 mA max.
Residual Ripple at VCCA	typ. 30 mVpp
Error Detection	
Thermal Chutdeum Threehold	120 to 150 %C

Thermal Shutdown Threshold	130 to 150 °C
Undervoltage Threshold at VCC, VCCA	typ. 400 mV

Pin Configuration DFN10, SO8

